-
公开(公告)号:CN114880550B
公开(公告)日:2024-08-02
申请号:CN202210344135.4
申请日:2022-04-02
Applicant: 哈尔滨工程大学
IPC: G06F16/9535 , G06Q30/0601 , G06F18/25
Abstract: 本发明提出一种融合多方面时域信息的序列推荐方法、设备和介质。本发明考虑三种时域信息来提高序列推荐的性能,构建融合多方面时域信息的序列推荐模型,模型包含三个部分,每一部分利用一种多粒度时域信息生成下一个用户可能感兴趣的物品表示。所述模型具体包括绝对时间模块,相对物品时间间隔模块和相对推荐时间间隔模块。三个模块经过有效的融合生成最终用户下一时刻感兴趣的物品表示,从而大大提高序列推荐性能。
-
公开(公告)号:CN112733018B
公开(公告)日:2022-12-06
申请号:CN202011636004.0
申请日:2020-12-31
Applicant: 哈尔滨工程大学
IPC: G06F16/9535 , G06N3/04 , G06N3/08
Abstract: 本发明提供了一种基于图神经网络GNN和多任务学习的会话推荐方法,包括以下步骤:采集用户在电子商务网站的点击数据,建立用户会话数据集;根据用户会话数据,构建用户会话有向图;构建GNN‑MulitTask‑Learning神经网络模型,并训练输出用户会话表示;根据输出的用户会话表示输入打分函数计算所有候选项目的推荐概率,进行个性化推荐。本发明是针对会话推荐场景中,获取用户点击项项目之间关系,以及历史会话对当前会话的影响,并通过多任务学习增加隐性数据,使用户表示更具通用性和可迁移性,更准确预估用户对项目的偏爱,捕捉用户兴趣趋势,提高了用户对项目的点击率。
-
公开(公告)号:CN114896515A
公开(公告)日:2022-08-12
申请号:CN202210344092.X
申请日:2022-04-02
Applicant: 哈尔滨工程大学
IPC: G06F16/9536 , G06F16/9535 , G06N3/04 , G06N3/08 , G06K9/62
Abstract: 本发明提出基于时间间隔的自监督学习协同序列推荐方法、设备和介质。本发明使用图神经网络、注意力机制、自监督等技术构建基于时间间隔的自监督学习协同序列推荐模型,利用用户个人信息与交互数据,完成注意力权重改变机制和自监督学习,模型在训练过程中不断更改其中相关参数,充分考虑到了用户的周期性兴趣,并将协同信息与序列信息进行有效的融合,大大提高了个性化推荐性能。
-
公开(公告)号:CN110602145B
公开(公告)日:2022-06-21
申请号:CN201910940865.9
申请日:2019-09-30
Applicant: 哈尔滨工程大学
IPC: H04L9/40 , H04L67/1396 , H04L67/52
Abstract: 本发明公开了一种基于位置服务的轨迹隐私保护方法。步骤1:根据用户的真实位置location生成模糊区域BA;步骤2:用模糊区域BA替代用户真实位置location,从多个匿名器中随机选择一个匿名服务器,向其发送查询请求(id,BA,t,query,k);步骤3:匿名服务器收到步骤2发送的请求信息后,在模糊区域BA内根据路网选择一个位置点Li;步骤4:匿名服务器根据步骤3中产生的Li生成匿名查询请求;步骤5:向位置服务提供商发送匿名查询请求。本发明基于多匿名器系统结构隐私保护模型进行实时轨迹隐私保护方法的研究,提出将位置模糊和K‑匿名相结合的方法,以达到增强轨迹隐私保护同时保证数据可用性的目的。
-
公开(公告)号:CN112580382B
公开(公告)日:2022-06-17
申请号:CN202011589243.5
申请日:2020-12-28
Applicant: 哈尔滨工程大学
IPC: G06K7/14
Abstract: 本发明公开了一种基于目标检测二维码定位方法,包括:构建二维码图像数据集,并划分为训练集和测试集,分别对两个数据集进行预处理,得到处理后的图像数据及每张图像所对应的标签文件;构建特征提取网络,利用特征提取网络对卷积操作进行优化,得到多个特征图;构建预测模块,采用空间注意力机制获得多个特征图中每个目标中心点特征;将训练集和每张图像所对应的标签文件输入特征提取网络和预测模块中进行训练,得到训练好的二维码定位模型;将训练集输入训练好的二维码定位模型中进行测试,得到最终二维码在图像上的位置坐标。该方法实现快速定位与较少参数模型的二维码定位模型。
-
公开(公告)号:CN110442800B
公开(公告)日:2022-05-20
申请号:CN201910659962.0
申请日:2019-07-22
Applicant: 哈尔滨工程大学
IPC: G06F16/9536
Abstract: 一种融合节点属性和图结构的半监督社区发现方法,属于网络分析技术领域。包括以下步骤:1)计算m个属性的信息熵;2)计算属性相似度;3)利用Jaccard相似度计算结构相似度;4)计算属性和结构总的相似度;5)寻找K个初始社区;6)初始化初始社区矩阵;7)结合半监督方法计算出社区划分矩阵;8)计算平衡值(trade‑off)分析参数的合理取值范围9)根据trade‑off和模块度获得最优的模块度及社区发现结果。本发明通过不断调节算法中涉及的参数来得到一种合理地划分方式,并最后给出对于社区发现最优结果以及算法参数合理范围;融合属性进行社区发现,给出了属性所占比例的合理范围,社区发现模块度和紧密度得到提高。
-
公开(公告)号:CN114492978A
公开(公告)日:2022-05-13
申请号:CN202210067402.8
申请日:2022-01-20
Applicant: 哈尔滨工程大学
Abstract: 本发明提出了一种基于多层注意力机制的时空序列预测方法及设备,本发明基于注意力机制,根据跨领域数据的交叉影响,逐时间步融合多维特征构建历史数据特征,在不引入噪声的前提下,充分利用邻域数据丰富目标区域的特征信息,捕获不同区域时空序列的空间依赖关系。采用LSTM编码器分别捕获时间序列的长期、中期发展模式及短期突变信息,逐步利用注意力机制动态捕获多重时序关系对未来的影响,逐时间步计算相应历史信息的影响权重,最终使用LSTM解码器充分融合多跨度的历史数据,对时空序列进行预测。本发明可以在不引入噪声的前提下,充分利用邻域数据丰富目标区域的特征信息,捕获不同区域时空序列的空间依赖关系。
-
公开(公告)号:CN112580382A
公开(公告)日:2021-03-30
申请号:CN202011589243.5
申请日:2020-12-28
Applicant: 哈尔滨工程大学
IPC: G06K7/14
Abstract: 本发明公开了一种基于目标检测二维码定位方法,包括:构建二维码图像数据集,并划分为训练集和测试集,分别对两个数据集进行预处理,得到处理后的图像数据及每张图像所对应的标签文件;构建特征提取网络,利用特征提取网络对卷积操作进行优化,得到多个特征图;构建预测模块,采用空间注意力机制获得多个特征图中每个目标中心点特征;将训练集和每张图像所对应的标签文件输入特征提取网络和预测模块中进行训练,得到训练好的二维码定位模型;将训练集输入训练好的二维码定位模型中进行测试,得到最终二维码在图像上的位置坐标。该方法实现快速定位与较少参数模型的二维码定位模型。
-
公开(公告)号:CN103331713A
公开(公告)日:2013-10-02
申请号:CN201310276545.0
申请日:2013-07-03
Applicant: 中国海洋石油总公司 , 海洋石油工程股份有限公司 , 哈尔滨工程大学
IPC: B25B11/00
Abstract: 一种双摇杆自适应定心夹具,设有:机架,该机架上设置有驱动液压缸及双摇杆机构;其中,驱动液压缸的缸体顶端与机架铰接为一体,驱动液压缸的活塞杆端和双摇杆机构中的主动摇杆的一端与连杆复合铰接为一体;该主动摇杆的另一端与机架铰接为一体;该连杆与从动摇杆复合铰接为一体。本发明在对管桩加工及维修时,不仅可以将被夹持件夹紧,使两者之间不会产生任何位移,而且,还能够实现对圆柱件的多点夹持,保证了旋转作业机具,在沿着与夹具同心固连的圆形导轨周向作业时,始终与夹具同心运行;并对不同直径的圆柱件均能实施同心作业,增加了适应管桩直径范围;且在夹持过程中是自适应定心,无需调整与修正;便可方便、快捷、高效的实施夹持作业。
-
公开(公告)号:CN114491248B
公开(公告)日:2024-10-29
申请号:CN202210067403.2
申请日:2022-01-20
Applicant: 哈尔滨工程大学
IPC: G06F16/9535 , G06N3/045 , G06N3/0442
Abstract: 本发明提出了一种基于用户多意图演进的序列推荐方法,所述方法具体包括:采集用户的历史交互数据,并对数据进行预处理;设计多意图提取模块,捕获用户的多个意图;设计意图感知重映射层,将序列的顺序信息和时间信息显示地注入到用户项目的交互序列中;设计意图感知演进层,捕捉用户每个兴趣意图的动态偏移;设计多意图聚合模块,在更精细的意图粒度上捕获具有更多信息的用户表示。本发明可以同时考虑用户历史交互序列中的潜在多意图、不同意图的动态演变以及丰富候选物品的特征表示最大化的利用多意图嵌入的好处,从而达到提升推荐性能的目的。
-
-
-
-
-
-
-
-
-