基于自适应卷积的水声信号分类识别方法

    公开(公告)号:CN111460932B

    公开(公告)日:2022-06-21

    申请号:CN202010188704.1

    申请日:2020-03-17

    Abstract: 基于自适应卷积的水声信号分类识别方法,本发明涉及水声信号分类识别方法。本发明的目的是为了解决现有模型对特征提取能力不足导致分类准确率低的问题。过程为:一、建立自适应卷积神经网络模型;二、将带标签的水声信号分为训练集和测试集;将训练集输入模型,对模型进行训练,得到预训练好的自适应卷积神经网络模型;将测试集输入预训练好的模型,若测试准确率大于等于85%,则认为模型为最终训练好的模型;否则对模型参数进行调整,并再次利用训练集进行模型训练;直到获得训练好的模型。三、将待测试的水声信号输入训练好的自适应卷积神经网络模型,完成对水声信号的分类识别。本发明用于水声信号分类识别领域。

    变色龙算法中相似性度量及截断方法

    公开(公告)号:CN108932528A

    公开(公告)日:2018-12-04

    申请号:CN201810589956.8

    申请日:2018-06-08

    Abstract: 本发明公开了变色龙算法中相似性度量及截断方法,属于凝聚型层次聚类算法技术领域。变色龙在稀疏图上运行,其中节点表示数据项,加权边表示数据项之间的相似性,变色龙通过使用两阶段算法找出数据集中的簇,在第一阶段,根据数据集构造出一个k-最近邻图Gk,使用图分区算法将数据项分为几个相对较小的子集群,在第二阶段,它使用一种算法,通过重复组合这些子集群来找到真正的集群;该改进算法通过引入递归二分法、flood fill漫水填充法以及第一跳截断等对传统的变色龙聚类算法进行了改进,还提出了一种能够从修改的变色龙树状图中自动选择最佳聚类结果的方法。

    一种基于社交网络信任度的微视频个性化推荐算法

    公开(公告)号:CN108920503A

    公开(公告)日:2018-11-30

    申请号:CN201810519638.4

    申请日:2018-05-28

    Abstract: 本发明提供了一种基于社交网络信任度的微视频个性化推荐算法,属于计算机算法领域。步骤如下:1.利用全局信任度和局部信任的差值计算用户偏差度;2.在传统相似度的计算方法中加入置信度因素;3.利用信任对时间的依赖性,信任网络发生动态地演化;4.创建用户的相似网络和信任络组成的双网络时域演化模型;5.根据DNTDEM的建立,得到一个全新的用户信任网络;6.利用LDA模型对推荐内容进行补充;7.预测的用户应该与其的情感邻居相似,然后通过最小化误差平方值对其进行优化。本发明可以有效识别高质量的新形式的用户生成内容(UGC),并向适当的用户进行推荐;还可以减轻其他用户主观偏见对推荐内容的影响,从而更加客观的向对象用户提供更优质的推荐内容。

    一种基于注意力的卷积神经网络优化方法

    公开(公告)号:CN108875592A

    公开(公告)日:2018-11-23

    申请号:CN201810519139.5

    申请日:2018-05-28

    Abstract: 本发明提供的是一种基于注意力模型的卷积神经网络优化方法。首先对水下目标的噪声数据进行分段,针对每段噪声数据提取其MFCC,其目的是将目标噪声数据变成定长的矢量化数据。然后,将得到的定长的矢量化数据按实验过程中水听器的排布位置以及其时序关系进行拼接,形成一个完整的时段水听阵特征,继而再将形成的水听阵特征转成对应的图片以作为输入数据集输入到训练网络中。本发明通过试验对模型在使用情况的结果分析以及对模型进行修改与优化,深度学习对水下目标识别识别率的得到10%‑15%的提升。

    基于自适应卷积的水声信号分类识别方法

    公开(公告)号:CN111460932A

    公开(公告)日:2020-07-28

    申请号:CN202010188704.1

    申请日:2020-03-17

    Abstract: 基于自适应卷积的水声信号分类识别方法,本发明涉及水声信号分类识别方法。本发明的目的是为了解决现有模型对特征提取能力不足导致分类准确率低的问题。过程为:一、建立自适应卷积神经网络模型;二、将带标签的水声信号分为训练集和测试集;将训练集输入模型,对模型进行训练,得到预训练好的自适应卷积神经网络模型;将测试集输入预训练好的模型,若测试准确率大于等于85%,则认为模型为最终训练好的模型;否则对模型参数进行调整,并再次利用训练集进行模型训练;直到获得训练好的模型。三、将待测试的水声信号输入训练好的自适应卷积神经网络模型,完成对水声信号的分类识别。本发明用于水声信号分类识别领域。

    基于力引导的点布局优化算法

    公开(公告)号:CN109005048A

    公开(公告)日:2018-12-14

    申请号:CN201810519647.3

    申请日:2018-05-28

    Abstract: 本发明属于可视化数据技术领域,公开了基于力引导的点布局优化算法,包括如下步骤:步骤(1):定义节点集合,边集合和无向图G;步骤(2):设置系统中吸引力的总大小,系统中排斥力的总大小和总量级函数;步骤(3):定义M(0);步骤(4):用算法聚集阶段迭代的总数和算法分裂阶段迭代的总数表示;步骤(5):计算吸引力和排斥力在X轴方向和Y轴方向上的分量;步骤(6):用笛卡尔坐标空间内X、Y轴方向上的排斥力和吸引力表示第t次迭代时节点在X、Y轴方向上受到的合力,然后获取节点迭代后的坐标;步骤(7):迭代次数等于一个固定值时,迭代停止,算法结束。本发明解决传统算法中迭代次数多的问题,具有更好的扩展性。

    一种基于知识图谱的关系预测方法

    公开(公告)号:CN108694469A

    公开(公告)日:2018-10-23

    申请号:CN201810589288.9

    申请日:2018-06-08

    CPC classification number: G06Q10/04

    Abstract: 本发明为一种基于知识图谱的关系预测方法,将知识图谱利用无向图来表示,提出了一种改进的结合了双向关系路径和嵌入式的混合关系预测算法,包括如下步骤:(1)将三元组数据集构建一个有效的知识图谱,并初始化参数;(2)对知识图谱中每个实体和关系利用TransE算法进行训练,将实体和关系嵌入到一个低维的向量空间中;(3)抽取出每个三元组的关系标签,构建每个关系的子图;(4)在每个关系子图上,通过迭代的方式发现每个实体之间的可达路径,并根据图结构划分子图,对每个可达路径的可靠性进行计算;(5)迭代每两个没有直接边连接的实体,通过构造的联合评价函数和损失函数来评估两个实体之间是否存在隐含关系;(6)补全知识图谱结构。

    一种基于斜率弹性相似性度量方法

    公开(公告)号:CN107871140A

    公开(公告)日:2018-04-03

    申请号:CN201711085758.X

    申请日:2017-11-07

    CPC classification number: G06K9/6215

    Abstract: 本发明提供的是一种基于斜率弹性相似性度量方法。步骤一:输入时间序列x和y及过滤参数λ,进行l1趋势过滤,输出折线X和Y;步骤二:计算折线X和Y各分段加权斜率,折线X和Y用加权斜率表示为kx和ky;设定等距间隔参数d,等距插入加权斜率;步骤三:经过插值处理后,形成两个新不等长序列,使用动态时间弯曲距离DTW计算不等长序列的趋势距离。本发明把时间序列通过滤波特征表示为折线段,保留了趋势信息并实现了降维;线段权重斜率可实现趋势的度量比较;通过等距插值以适应DTW等间隔计算,实现了弹性度量。

Patent Agency Ranking