-
公开(公告)号:CN113298184B
公开(公告)日:2022-09-02
申请号:CN202110687034.2
申请日:2021-06-21
Applicant: 哈尔滨工程大学
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 用于小样本图像识别的样本抽取、扩充方法及存储介质,属于图像处理技术领域。为了解决针对于小样本图像识别过程中采用生成新样本的方式中存在的可能导致的生成错误样本的问题。本发明首先提出了一种基于特征重构的样本抽取方法来解决小样本数据集特征缺失的问题,从数据特征的角度实现了大样本数据集中抽取出一个典型小样本数据集。该方法将大样本数据的质心作为抽取度量的标准,使得抽取出的典型小样本数据集具有更全面的特征,效果更稳定。本发明还提出了基于变形信息的样本扩充方法,利用最优划分中同类异簇的数据间变形信息实现了将抽取出的典型小样本数据集扩充成新的大样本数据集。主要用于小样本图像识别的样本抽取及扩充。
-
公开(公告)号:CN113592016A
公开(公告)日:2021-11-02
申请号:CN202110908117.X
申请日:2021-08-09
Applicant: 哈尔滨工程大学
Abstract: 基于互信息增强的自监督新颖性检测方法,涉及图像处理领域。本发明是为了解决现有图像新颖性检测方法的重构效果不佳,难以对类内外图像边界进行区分,进而导致在复杂场景中检测效果差的问题。本发明具体过程为:将待检测的图像输入到训练好的自监督新颖性检测模型的自编码网络中进行新颖性检测,获得检测结果。所述自监督新颖性检测模型包括:自编码网络、隐鉴别器、鉴别器、分类器;自编码网络包括:生成器和编码器,用于对输入的待检测图像数据进行重构;所述隐鉴别器用于与编码器进行对抗训练;所述鉴别器用于与生成器进行对抗训练;分类器用于对生成器生成的图像进行分类。本发明用于对图像的新颖性进行检测。
-
公开(公告)号:CN113554104A
公开(公告)日:2021-10-26
申请号:CN202110856234.6
申请日:2021-07-28
Applicant: 哈尔滨工程大学
Abstract: 一种基于深度学习模型的图像分类方法,属于图像分类领域。本发明解决了现有针对图像分类的神经网络无法在保证图像分类准确率的同时降低训练时间和模型参数规模的问题。本发明方法包括:建立图像分类模型,对图像分类模型进行冷启动训练;获取图像数据作为训练集,从“V”型相似度曲线中选取一个相似度系数作为相似度阈值,基于该阈值,利用训练集对图像分类模型参数进行训练,获取当前图像分类模型的参数;基于动态阈值和当前图像分类模型的参数,逐步降低该阈值,将训练集输入图像分类模型中,进行图像分类模型训练,获得最优的分类模型,停止图像分类模型训练;将待分类的图像输入最优的图像分类模型,得到图像分类结果。本发明用于图像分类。
-
公开(公告)号:CN115035912A
公开(公告)日:2022-09-09
申请号:CN202210644380.7
申请日:2022-06-08
Applicant: 哈尔滨工程大学
Abstract: 基于MOC模型的水声信号样本自动标注方法,具体涉及一种基于MOC模型的水下声音信号样本的自动标注方法,本发明为解决传统水声信号样本标注采用人工方法,不仅费时费力,经济效益低,还受专业性限制,标注准确性低的问题,它包括采集水声信号作为样本,利用声学模型计算所述水声信号样本的声学特征;建立MOC模型,MOC模型依次包括卷积层一、优选卷积残差层、卷积层二、注意力机制层、全连接层和分类层,将水声信号样本的声学特征输入MOC模型内进行训练,输出已标注的水声信号样本,直到loss收敛,得到训练好的MOC模型;将待标注的水声信号样本上述操作,得到已标注的水声信号样本。属于水下声音信号标注领域。
-
公开(公告)号:CN114565831A
公开(公告)日:2022-05-31
申请号:CN202210202911.7
申请日:2022-03-02
Applicant: 哈尔滨工程大学
IPC: G06V20/05 , G06V10/762 , G06V10/764 , G06V10/774 , G06K9/62 , G06N20/00
Abstract: 一种考虑深度学习模型健壮性的水下目标分类的方法,本发明为了解决现有深度学习模型对水下目标分类准确率低的问题,它包括利用训练好的原始模型对采集的水下目标数据训练集进行预测得到所有分类正确样本的集合和所有分类错误样本的集合;将所有分类错误样本的集合输入训练好的原始模型内,对分类错误样本的特征进行聚类和特征补偿,得到分类错误样本的特征补偿;将特征补偿输入训练好的原始模型内得到特征补偿后的原始模型;将水下目标数据训练集输入特征补偿后的原始模型内,输出分类错误的样本;建立对抗训练模型,得到训练好的对抗训练模型;将对抗训练模型与特征补偿后的原始模型加权组合生成深度学习模型;属于水下目标分类领域。
-
公开(公告)号:CN114091531A
公开(公告)日:2022-02-25
申请号:CN202111341770.9
申请日:2021-11-12
Applicant: 哈尔滨工程大学
Abstract: 基于多尺度的环境特征提取方法,涉及水下声纹特征提取技术领域,针对现有技术中模型特征提取准确率低的问题,包括:步骤一:采集水声信号数据,并将水声信号数据的特征进行标记,之后利用标记后的水声信号数据构成数据集;步骤二:对数据集进行预处理,并将预处理后的数据集作为训练集;步骤三:利用训练集训练多尺度的环境特征提取网络模型;步骤四:利用训练好的多尺度的环境特征提取网络模型对水域环境的水声信号进行特征提取。本申请使用局部切这样更加均衡的切分方式,提高了模型特征提取的准确率。
-
公开(公告)号:CN113298184A
公开(公告)日:2021-08-24
申请号:CN202110687034.2
申请日:2021-06-21
Applicant: 哈尔滨工程大学
Abstract: 用于小样本图像识别的样本抽取、扩充方法及存储介质,属于图像处理技术领域。为了解决针对于小样本图像识别过程中采用生成新样本的方式中存在的可能导致的生成错误样本的问题。本发明首先提出了一种基于特征重构的样本抽取方法来解决小样本数据集特征缺失的问题,从数据特征的角度实现了大样本数据集中抽取出一个典型小样本数据集。该方法将大样本数据的质心作为抽取度量的标准,使得抽取出的典型小样本数据集具有更全面的特征,效果更稳定。本发明还提出了基于变形信息的样本扩充方法,利用最优划分中同类异簇的数据间变形信息实现了将抽取出的典型小样本数据集扩充成新的大样本数据集。主要用于小样本图像识别的样本抽取及扩充。
-
-
-
-
-
-