-
公开(公告)号:CN113592016A
公开(公告)日:2021-11-02
申请号:CN202110908117.X
申请日:2021-08-09
Applicant: 哈尔滨工程大学
Abstract: 基于互信息增强的自监督新颖性检测方法,涉及图像处理领域。本发明是为了解决现有图像新颖性检测方法的重构效果不佳,难以对类内外图像边界进行区分,进而导致在复杂场景中检测效果差的问题。本发明具体过程为:将待检测的图像输入到训练好的自监督新颖性检测模型的自编码网络中进行新颖性检测,获得检测结果。所述自监督新颖性检测模型包括:自编码网络、隐鉴别器、鉴别器、分类器;自编码网络包括:生成器和编码器,用于对输入的待检测图像数据进行重构;所述隐鉴别器用于与编码器进行对抗训练;所述鉴别器用于与生成器进行对抗训练;分类器用于对生成器生成的图像进行分类。本发明用于对图像的新颖性进行检测。
-
公开(公告)号:CN113592016B
公开(公告)日:2023-12-01
申请号:CN202110908117.X
申请日:2021-08-09
Applicant: 哈尔滨工程大学
IPC: G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/09
Abstract: 基于互信息增强的自监督新颖性检测方法,涉及图像处理领域。本发明是为了解决现有图像新颖性检测方法的重构效果不佳,难以对类内外图像边界进行区分,进而导致在复杂场景中检测效果差的问题。本发明具体过程为:将待检测的图像输入到训练好的自监督新颖性检测模型的自编码网络中进行新颖性检测,获得检测结果。所述自监督新颖性检测模型包括:自编码网络、隐鉴别器、鉴别器、分类器;自编码网络包括:生成器和编码器,用于对输入的待检测图像数据进行重构;所述隐鉴别器用于与编码器进行对抗训练;所述鉴别器用于与生成器进行对抗训练;分类器用于对生成器生成的图像进行分类。本发明用于对图像的新颖性进行检测。
-