-
公开(公告)号:CN114565831B
公开(公告)日:2025-02-25
申请号:CN202210202911.7
申请日:2022-03-02
Applicant: 哈尔滨工程大学
IPC: G06V20/05 , G06V10/762 , G06V10/764 , G06V10/774 , G06V10/82
Abstract: 一种考虑深度学习模型健壮性的水下目标分类的方法,本发明为了解决现有深度学习模型对水下目标分类准确率低的问题,它包括利用训练好的原始模型对采集的水下目标数据训练集进行预测得到所有分类正确样本的集合和所有分类错误样本的集合;将所有分类错误样本的集合输入训练好的原始模型内,对分类错误样本的特征进行聚类和特征补偿,得到分类错误样本的特征补偿;将特征补偿输入训练好的原始模型内得到特征补偿后的原始模型;将水下目标数据训练集输入特征补偿后的原始模型内,输出分类错误的样本;建立对抗训练模型,得到训练好的对抗训练模型;将对抗训练模型与特征补偿后的原始模型加权组合生成深度学习模型;属于水下目标分类领域。
-
公开(公告)号:CN114565831A
公开(公告)日:2022-05-31
申请号:CN202210202911.7
申请日:2022-03-02
Applicant: 哈尔滨工程大学
IPC: G06V20/05 , G06V10/762 , G06V10/764 , G06V10/774 , G06K9/62 , G06N20/00
Abstract: 一种考虑深度学习模型健壮性的水下目标分类的方法,本发明为了解决现有深度学习模型对水下目标分类准确率低的问题,它包括利用训练好的原始模型对采集的水下目标数据训练集进行预测得到所有分类正确样本的集合和所有分类错误样本的集合;将所有分类错误样本的集合输入训练好的原始模型内,对分类错误样本的特征进行聚类和特征补偿,得到分类错误样本的特征补偿;将特征补偿输入训练好的原始模型内得到特征补偿后的原始模型;将水下目标数据训练集输入特征补偿后的原始模型内,输出分类错误的样本;建立对抗训练模型,得到训练好的对抗训练模型;将对抗训练模型与特征补偿后的原始模型加权组合生成深度学习模型;属于水下目标分类领域。
-