-
公开(公告)号:CN119331254A
公开(公告)日:2025-01-21
申请号:CN202411335324.0
申请日:2024-09-24
Applicant: 哈尔滨工业大学
Abstract: 一种可光固化3D打印的SiZrOC树脂及其制备方法和应用,属于陶瓷3D打印技术领域。SiZrOC树脂的制备方法包括步骤一、将氧氯化锆溶解在溶剂A中,加入螯合剂和三乙胺,混合均匀得到溶液A;将硅烷、溶剂B和去离子水混合,充分混匀得到溶液B;步骤二、将溶液A滴入溶液B中,反应一段时间后得到SiZrOC溶胶;步骤三、旋蒸SiZrOC溶胶,得到白色浑浊的高粘度树脂;步骤四、将高粘度树脂和有机溶剂分散均匀,然后减压过滤得到澄清透明的淡黄色滤液,将滤液旋蒸处理,得到淡黄色透明的SiZrOC树脂。本发明通过聚合物衍生陶瓷3D打印技术制备的陶瓷零件有着超高的力学性能和耐高温性。
-
公开(公告)号:CN119221325A
公开(公告)日:2024-12-31
申请号:CN202411309406.8
申请日:2024-09-19
Applicant: 哈尔滨工业大学 , 北京宇航系统工程研究所
Abstract: 一种燃料电池气体扩散层用碳纸及其制备方法,属于燃料电池技术领域。所述方法为:将碳纳米管在强酸下氧化,得羧基化碳纳米管;将其与可溶性铁盐溶液混合,加入氢氧化钠溶液,制备四氧化三铁/碳纳米管复合物;将其与粘接剂、树脂稀释剂、蒸馏水混合,得Pickring乳液粘接剂;将碳纤维分散于含有分散剂和表面活性剂的水溶液中,打浆制备碳纤维浆料,并抄纸得到碳纤维原纸;将碳纤维原纸浸泡在Pickring乳液粘接剂中,进行原位破乳,得到碳纤维粘接原纸;依次进行碳纤维粘接原纸除水、磁场控制磁性导电粒子取向、热压成型三道工序,即得碳纸。本发明方法简单且用量少,节约成本,保护环境,且避免了多次浸渍树脂,导致碳纸产生裂纹的问题。
-
公开(公告)号:CN116356574B
公开(公告)日:2024-08-13
申请号:CN202310379910.4
申请日:2023-04-11
Applicant: 哈尔滨工业大学
IPC: D06M15/643 , D06M15/55 , C08J5/06 , C08L63/00 , D06M101/40
Abstract: 本发明公开了一种可提升复合材料CAI性能的碳纤维上浆剂的制备方法,所述方法包括如下步骤:步骤1、制备不同官能团种类的多官能度POSS;步骤2、将多官能度POSS与复配的环氧树脂行混合,得到POSS环氧树脂;步骤3、向POSS环氧树脂中加入分散剂进行超声处理;步骤4、将分散好的POSS环氧树脂与乳化剂混合,然后加入蒸馏水进行均质、乳化,得到POSS改性后环氧乳液型上浆剂。本发明将POSS引入到上浆剂中,可以实现POSS在纤维表面的均匀分散,避免了传统通过层间加入纳米粒子改善复合材料CAI的方式带来的纳米粒子团聚现象的发生,且操作简单,满足工业化实际应用条件,具有较好的工业应用前景。
-
公开(公告)号:CN114394264B
公开(公告)日:2024-06-25
申请号:CN202210044883.0
申请日:2022-01-14
Applicant: 哈尔滨工业大学
IPC: B64G4/00
Abstract: 一种太空垃圾清理系统及方法,属于太空垃圾处理技术领域。本发明的目的是为了解决传统太空垃圾清理措施效率低、成本高等问题,所述太空垃圾清理系统包括飞行控制系统以及与飞行控制系统机械连接的供电系统、火控雷达、发射机构及自毁弹体;所述供电系统与飞行控制系统、飞行控制系统与发射机构、火控雷达与发射机构之间均为电连接和信号连接,所述供电系统为飞行控制系统、火控雷达和发射机构供电,所述飞行控制系统处理供电系统、火控雷达及发射机构之间的信号交互,并通过供电系统电流通断实现飞行姿态调整、火控雷达定向与发射机构运行。本发明采用动能弹药高速撞击的方式对太空碎片进行快速降轨处理,机构简单、反应快、精准度高。
-
公开(公告)号:CN117904869A
公开(公告)日:2024-04-19
申请号:CN202410042295.2
申请日:2024-01-11
Applicant: 哈尔滨工业大学
IPC: D06M13/513 , D06M13/328 , D06M15/59 , D06M15/643 , D06M101/36
Abstract: 本发明公开了一种高气密纤维复合取芯软袋的制备方法,所述方法首先对芳纶纤维表面进行接枝处理,改善芳纶纤维的表面惰性,并使用硅烷偶联剂KH‑550修饰,最终在纤维表面得到目标官能团‑NH3,采用同质的纳米芳纶纤维涂覆,利用纳米芳纶纤维表面丰富的的‑COOH与纤维表面接枝的‑NH3之间官能团的键合以及较强的氢键及范德华力作用将两者紧密结合起来,填补了传统芳纶纤维取芯软袋的空隙,提升了取芯软袋的力学性能,最后通过涂覆有机硅橡胶进一步提升了取芯软袋的致密性,降低了取芯软袋的孔隙率,同时也提升了取芯软袋在外太空恶劣环境中的耐寒性与耐紫外线性能,为我国探月工程项目提供技术储存以及服务。
-
公开(公告)号:CN114805799B
公开(公告)日:2024-03-19
申请号:CN202210551921.1
申请日:2022-05-18
Applicant: 哈尔滨工业大学
Abstract: 一种PIPD‑SWCNT共聚物的制备方法及应用,具体方案包括以下步骤:步骤一、对单壁碳纳米管进行羧基化得到羧基化的SWCNT;步骤二、在无氧反应体系中,将2,3,5,6‑四氨基吡啶盐酸盐逐步升温,抽真空脱除HCl;步骤三、加入五氧化二磷和2,5‑二羟基对苯二甲酸后逐步升温,每个温度区间保温6~36h,当升温至160~170℃,加入羧基化的SWCNT,升温至180~200℃反应结束,得到PIPD‑SWCNT共聚物溶液。本发明在SWCNT表面引入羧基,使SWCNT以第三单体通过共聚的方式均匀的键接到PIPD主链中,SWCNT在PIPD‑SWCNT共聚物主链中充当交联中心得到三维网状结构,PIPD‑SWCNT复合纤维的拉伸强度比纯PIPD纤维提升了60%‑80%。
-
公开(公告)号:CN113621215B
公开(公告)日:2024-02-09
申请号:CN202110859349.0
申请日:2021-07-28
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种有机‑无机杂化生物质酚醛树脂耐烧蚀材料的制备方法,所述方法包括如下步骤:一、通过碱催化下酚类与醛类的加成与缩合反应,制备出低粘度甲阶酚醛树脂,加入酚醛接枝用催化剂、有机硅化合物进行共聚合,得到有机硅改性的生物质酚醛树脂;二、通过三官能度硅烷、二官能度硅烷与有机硼化合物在酸催化下的共水解缩合或非水解共聚制备硼硅树脂低聚物;三、将有机硅改性的生物质酚醛树脂与硼硅树脂低聚物在共溶剂中溶解,加入硅氮烷或含氮化合物搅拌,得到有机‑无机杂化的生物质酚醛树脂。该方法制备的有机‑无机杂化生物质酚醛树脂具有优异的耐高温性能,且在高温下拥有较高的残炭率。
-
公开(公告)号:CN116903861A
公开(公告)日:2023-10-20
申请号:CN202311168941.1
申请日:2023-09-12
Applicant: 哈尔滨工业大学
IPC: C08G77/06 , C08G77/26 , C08G59/50 , C09J163/00 , C09J11/04 , C09J11/06 , C09J7/10 , C09J7/30 , B32B27/38 , B32B27/18 , B32B9/04 , B32B27/12 , B32B27/02 , B32B27/34
Abstract: 一种高氨值硅油的合成方法、有机硅/环氧胶膜及其制备方法与可弯折层压板,属于环氧树脂胶膜的制备技术领域。具体方案如下:一种低密度、低导热阻燃有机硅/环氧胶膜的原料包括以下重量份数的组分:环氧树脂30‑50份、偶联剂1‑4份、二氧化硅气凝胶粉末10‑30份、阻燃剂40‑100份、高氨值硅油2‑8份。所制备的环氧胶膜用于制备复合材料板,复合材料板具有优异的阻燃性和隔热性能,并且弯折90°以上复合材料不被破坏。
-
公开(公告)号:CN113621171B
公开(公告)日:2023-08-18
申请号:CN202111064973.8
申请日:2021-09-11
Applicant: 哈尔滨工业大学
IPC: C08J11/00 , C08L101/06
Abstract: 一种在温和条件下无损回收废弃含羰基的热固性树脂中增强体的方法,属于高分子复合材料降解技术领域,具体方案包括以下步骤:步骤一、将废弃含羰基的热固性树脂与碱性溶液混合并加热,得到液相产物和凝胶态的固相产物;步骤二、通过调控凝胶态的固相产物在不同溶剂中的溶胀,使其具有粘性,干燥后采用物理分离的方式去除增强体表面的树脂得到增强体的前驱体;步骤三、采用高级氧化技术对增强体的前驱体进一步降解,回收得到增强体,本发明反应溶剂绿色,降解温度温和,减少了能源的消耗;降解过程快速高效,树脂移除率高达100%,能够实现碳纤维的无损回收,使高附加值碳纤维资源得到了循环利用,有着十分重要的工业化前景。
-
公开(公告)号:CN116510058A
公开(公告)日:2023-08-01
申请号:CN202310314032.8
申请日:2023-03-28
Abstract: 一种抗菌型细菌纤维素基创伤敷料的制备方法,涉及一种创伤敷料的制备方法。制备方法:将预处理的细菌纤维素膜经过TEMPO氧化处理浸泡到MOF(ZIF‑8)经过单宁酸(TA)改性处理后配置成一定浓度的溶液中,再次浸泡在一定浓度的MXene纳米片水分散液中,得到抗菌型细菌纤维素基创伤敷料。本发明所制备的细菌纤维素基抗菌型创伤敷料具有很好的抗菌效果(抑菌率>99%),且ZIF‑8和MXene光热协同抗菌的方法可以有效避免细菌的耐药性,且温和的光热效果还能够促进细胞的分化、增殖和迁移,加快血管再生等;本发明制备的抗菌型敷料具有很好的抗氧化性、组织湿粘附性、生物可降解性、可裁剪性、良好的吸水性能、优异的生物相容性、止血性能和机械强度等性能。
-
-
-
-
-
-
-
-
-