-
公开(公告)号:CN107482098A
公开(公告)日:2017-12-15
申请号:CN201710862656.8
申请日:2017-09-20
Applicant: 南昌大学 , 南昌黄绿照明有限公司
CPC classification number: H01L33/38 , H01L33/0062 , H01L33/20 , H01L2933/0016
Abstract: 本发明公开了一种薄膜LED芯片结构,该芯片结构包括:基板底面金属层、键合基板、键合及光反射金属层、绝缘介质层、下电极、下掺杂层、非掺杂发光层、上掺杂层、粗化面、上欧姆接触层、上电极,特征是:上电极与下电极呈交错排列,上掺杂层的厚度大于下掺杂层的厚度。上掺杂层的厚度与下掺杂层的厚度之比r满足2≤r≤6,两个相邻上电极的分支间距w满足50微米≤w≤120微米。本发明能够使芯片上掺杂层和下掺杂层注入的载流子最大限度地在上电极对应的非掺杂发光区之外产生辐射复合发光,可以减少光传输到上电极下方区域的几率,从而减少上电极的光遮挡效应,可有效提高薄膜LED芯片的电光转换效率。
-
公开(公告)号:CN118738237A
公开(公告)日:2024-10-01
申请号:CN202410963470.1
申请日:2024-07-18
Applicant: 南昌大学 , 南昌硅基半导体科技有限公司 , 南昌实验室
Abstract: 本发明公开了一种双层微结构阵列的制备方法,基于主动制冷形成的微液滴作为压印微结构阵列的模板,通过采用双层聚合物薄膜作为牺牲层,通过主动制冷引入液滴阵列,引入上下双层聚合物薄膜同时在第二聚合物薄膜的上下表面实现微结构的压印制备,实现在第二聚合物薄膜的双表面上获得形貌可控的双层微结构阵列。本发明还公开了一种多基色LED封装结构,包括封装基板、若干不同基色的LED芯片、固晶层、引线、一次光学透镜、反光层和具有双层微结构阵列的聚合物薄膜,对比传统封装结构,双层微结构阵列可以有效混合散射的不同颜色光,将其应用于多基色LED封装中,显著提升了光源的空间颜色均匀性(ACU)。
-
公开(公告)号:CN118042672B
公开(公告)日:2024-10-01
申请号:CN202410437484.X
申请日:2024-04-12
Applicant: 南昌大学 , 南昌硅基半导体科技有限公司 , 南昌实验室
IPC: H05B45/30 , H05B45/20 , H05B45/345 , H05B45/56 , H05B47/165
Abstract: 本发明公开了一种多基色LED无粉光源的配光装置及配光方法,该装置包括系统控制单元、混光单元、光谱采集单元、温度控制单元、驱动单元,混光单元中布置了光谱探头、热沉以及置于热沉上的多基色LED无粉光源;其中,温度控制单元接收到系统控制单元发送的温度设置指令改变热沉的温度,从而改变多基色LED无粉光源基板的温度,驱动单元在接收到系统控制单元发送的各路电流设置指令改变多基色LED无粉光源的每路电流大小,光谱采集单元与光谱探头电信连接,以在某个温度和电流组合下点亮多基色LED无粉光源后,获取光谱探头采集到的多基色LED无粉光源发出的光色数据。本发明中解决了现有技术中配光不准确的问题。
-
公开(公告)号:CN118398747A
公开(公告)日:2024-07-26
申请号:CN202410332134.7
申请日:2024-03-22
Applicant: 南昌大学 , 南昌硅基半导体科技有限公司 , 南昌实验室
IPC: H01L33/58 , H01L25/075 , H01L33/54
Abstract: 本发明公开了一种曲面微结构阵列的制备方法,通过在柔性基底上设置柔性牺牲层,通过主动制冷技术在柔性牺牲层上制备微液滴阵列,然后将曲面光学透镜压入柔性牺牲层,实现将微液滴阵列转移复制到曲面光学透镜表面。这种方法能实现不同形状曲面表面排布紧密的微结构阵列制备,解决了传统光刻、模具压印方法无法在曲面上制备微结构阵列的难题。本发明还公开了一种金黄光LED封装模块,包括LED芯片、基板、固晶层、引线、曲面光学透镜和高透光聚合物层,高透光聚合物层表面设有由上述方法制备的排布紧密的微结构阵列,能实现金黄光LED封装模块不同颜色芯片出光的混光,提升空间颜色均匀性。
-
公开(公告)号:CN118352442A
公开(公告)日:2024-07-16
申请号:CN202410558069.X
申请日:2024-05-08
Applicant: 南昌大学 , 南昌硅基半导体科技有限公司 , 南昌实验室
Abstract: 本发明公开了一种LED封装方法及其封装结构,在采用点胶工艺制备LED塑料支架封装灯珠的过程中,通过调整点胶与加热固化工艺参数实现大体积光学透镜,同时采用特殊结构夹具和分段加热固化工艺实现特定形状一次光学透镜,同时保证了LED封装模块成品的高光提取效率。本发明技术方案具有工艺简单、灵活稳定和成本低的优点。
-
公开(公告)号:CN109360880B
公开(公告)日:2023-08-29
申请号:CN201811234462.4
申请日:2018-10-23
Applicant: 南昌大学 , 南昌硅基半导体科技有限公司
Abstract: 本发明公开了一种用于N面出光AlGaInP LED薄膜芯片的外延材料,自下而上依次包括N型GaAs衬底、N型GaAs缓冲层、第一腐蚀阻挡层、第二腐蚀阻挡层、第一N型粗化层、第二N型粗化层、N型限制层、N侧空间层、多量子阱发光区、P侧空间层、P型限制层、P型电流扩展层、P型欧姆接触层。本发明还公开了一种用于N面出光AlGaInP LED薄膜芯片的外延材料的制备方法。通过本发明可直接在第一N型粗化层上制备N电极,消除了欧姆接触层的光吸收问题,还可提高N电极的粘附性,简化N面出光AlGaInP LED薄膜芯片制备工艺,有效提高芯片指标并降低成本。
-
公开(公告)号:CN106783821B
公开(公告)日:2020-11-20
申请号:CN201611214568.9
申请日:2016-12-26
Applicant: 南昌大学 , 南昌硅基半导体科技有限公司
IPC: H01L25/075 , H01L33/48
Abstract: 本发明公开了一种无荧光粉的全光谱LED封装结构及其封装方法。该LED封装结构不使用荧光粉,通过多基色LED芯片直接合成白光。LED芯片包含AlInGaN材料体系制备的高光效垂直结构黄光LED芯片、高光效垂直结构绿光LED芯片、高光效垂直结构青光LED芯片和高光效垂直结构蓝光LED芯片,AlGaInP材料体系制备的高光效垂直结构红光LED芯片和高光效垂直结构橙光LED芯片。该全光谱LED封装方法,采用多基色LED芯片直接合成白光,全光谱出光具有更理想的光色品质,避免了荧光粉的使用,简化封装工艺,同时提高封装模块的可靠性,同时解决传统封装方法出光蓝光过多、青光缺失和红光不足的缺陷。
-
公开(公告)号:CN109360880A
公开(公告)日:2019-02-19
申请号:CN201811234462.4
申请日:2018-10-23
Applicant: 南昌大学 , 南昌黄绿照明有限公司
Abstract: 本发明公开了一种用于N面出光AlGaInP LED薄膜芯片的外延材料,自下而上依次包括N型GaAs衬底、N型GaAs缓冲层、第一腐蚀阻挡层、第二腐蚀阻挡层、第一N型粗化层、第二N型粗化层、N型限制层、N侧空间层、多量子阱发光区、P侧空间层、P型限制层、P型电流扩展层、P型欧姆接触层。本发明还公开了一种用于N面出光AlGaInP LED薄膜芯片的外延材料的制备方法。通过本发明可直接在第一N型粗化层上制备N电极,消除了欧姆接触层的光吸收问题,还可提高N电极的粘附性,简化N面出光AlGaInP LED薄膜芯片制备工艺,有效提高芯片指标并降低成本。
-
公开(公告)号:CN108933187A
公开(公告)日:2018-12-04
申请号:CN201810947645.4
申请日:2018-08-22
Applicant: 南昌大学 , 南昌黄绿照明有限公司
Abstract: 本发明公开了一种发光面为特定平面几何图形的LED芯片,所述LED芯片包括基板层,基板层从下至上依次包括接触层、基板反面保护层、支撑基板、基板正面保护层、键合层;基板层的上面从下至上依次设有粘结保护层、反射金属接触层,在反射金属接触层的上面设有图形化外延层;图形化外延层从下至上依次包括:互补结构层、p型层、发光层、n型层;在图形化外延层上面设有第一钝化层、N电极和第二钝化层;所述的图形化外延层形状为特定平面几何图形。本发明还提出了一种发光面为特定平面几何图形的LED芯片制备方法。本发明能够节省LED封装制造端的设计制造环节和批量生产的成本,而又不增加LED芯片制造成本。
-
公开(公告)号:CN106784208A
公开(公告)日:2017-05-31
申请号:CN201611036779.8
申请日:2016-11-23
Applicant: 南昌大学 , 南昌黄绿照明有限公司
Abstract: 本发明公开了一种AlInGaN基多量子阱发光二极管的外延结构,包含:一个材料生长衬底;层叠于所述衬底上的GaN基半导体叠层,该半导体叠层至少包含一层N型AlInGaN基半导体层、一层P型AlInGaN基半导体层和夹于N、P层之间的多量子阱发光有源层;特征是:在多量子阱发光有源层中,第n量子阱前的量子垒或第n‑1量子阱前的量子垒或第n、n‑1量子阱前的量子垒的禁带宽度大于其它量子垒的禁带宽度。本发明提高了电子注入主要发光阱的势垒,同时也提高了空穴溢出主要发光阱的势垒;可提高主要发光阱中的电子空穴匹配度,减少电子泄露,改善效率骤降效应,从而提高LED的量子效率。
-
-
-
-
-
-
-
-
-