-
公开(公告)号:CN112232240B
公开(公告)日:2024-08-27
申请号:CN202011129588.2
申请日:2020-10-21
Applicant: 南京师范大学
IPC: G06V20/40 , G06V20/52 , G06V10/25 , G06V10/44 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于优化交并比函数的道路抛洒物检测与识别方法,包括如下步骤:搭建基于优化交并比函数的道路抛洒物检测与识别模型;采集道路交通监控视频并进行分帧处理生成道路抛洒物数据集,对训练集图像进行标注,生成标签文件;将训练集全部图像和标签文件输入道路抛洒物检测与识别模型中进行训练,得到训练好的模型;将测试集图像输入训练好的道路抛洒物检测与识别模型进行检测识别,输出对于道路抛洒物的检测识别结果。本发明能够在复杂道路交通背景下对道路抛洒物进行检测和识别,能够输出道路抛洒物位置信息、类别信息以及大致形状特征,对于小目标有较好的检测识别效果,检测速度快、识别精度高。
-
公开(公告)号:CN117974740B
公开(公告)日:2024-07-02
申请号:CN202410385415.9
申请日:2024-04-01
Applicant: 南京师范大学 , 南京三万物联网科技有限公司
Abstract: 本发明公开了一种基于聚合式窗口自注意力机制的穴位定位方法,首先获取人体背部图像,并进行预处理,将预处理后的背部图像输入多尺度特征提取网络,得到背部特征图;多尺度特征提取网络包括若干特征图提取模块,预处理后的背部图像依次经过若干特征图提取模块的处理,每个特征图提取模块均包括聚合式窗口自注意力学习层;将背部特征图输入背部特征关键点检测网络进行背部特征关键点检测,得到背部特征关键点,通过背部穴位定位公式得到背部穴位具体坐标,实现背部穴位定位。在获取人体背部特征关键点特征中,针对关键点所处背部的位置,采用聚合式窗口自注意力学习方法,可以更加精准、快速的确定不同体型的人体背部的关键点位置。
-
公开(公告)号:CN118038103B
公开(公告)日:2024-06-14
申请号:CN202410432780.0
申请日:2024-04-11
Applicant: 南京师范大学
IPC: G06V10/762 , G06V10/74 , G06V10/764
Abstract: 本发明公开了一种基于改进动态扩展模型自适应算法的视觉回环检测方法,获取环境图像并进行标签定义,获得图像的特征标签矩阵;获取聚类图像,通过原图像与聚类图像之间的相似性计算,得到特征标签矩阵的非相似性值;并与阈值比较后进行特征标签矩阵划分;对划分后的强数据标签集合和正常数据标签集合进行改进的原型聚类处理,将正常数据标签集合聚类到聚类图像中的聚类中心附近,将强数据标签集合嵌套到距聚类图像中的聚类中心更远处,形成新的聚类图像;对处理后的图像实现视觉回环检测。采用改进的动态扩展模型自适应算法可排除未知目标域的强数据的污染干扰,保持正常数据样本匹配的精准稳定性,提高回环检测的精准性。
-
公开(公告)号:CN117944059B
公开(公告)日:2024-05-31
申请号:CN202410357453.3
申请日:2024-03-27
Applicant: 南京师范大学
IPC: B25J9/16 , G06V20/56 , G06V20/70 , G06V10/25 , G06V10/44 , G06V10/80 , G06V10/764 , G06V10/766 , G06V10/82 , G06T7/73 , G06N3/0464 , G06N3/0495 , G06N3/0455
Abstract: 本发明公开了一种基于视觉及雷达特征融合的轨迹规划方法,获取当前作业环境的视觉图像以及雷达点云,并进行预处理;将视觉图像经主干特征提取网络和图像特征金字塔网络处理得到高级特征图和雷达点云经激光点云特征提取网络处理得到点云特征图进行融合;根据候选框对融合特征后的特征图进行目标检测与识别;利用轻量级优化卷积神经网络对特征图进行语义分割;通过目标识别与语义分割确定识别目标的类别和位置,规划机器人的下一步行进轨迹。采用了高效的神经网络结构,多源传感器数据进行融合,并提供了新的轻量级深度神经网络架构和前景像素判断优化算法,能有效提高图像目标检测识别及语义分割的精度和速度,具有广泛的应用前景。
-
公开(公告)号:CN113392701B
公开(公告)日:2024-04-26
申请号:CN202110504527.8
申请日:2021-05-10
Applicant: 南京师范大学
IPC: G06V20/10 , G06V10/764 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/09
Abstract: 本发明公开了一种基于YN‑Net卷积神经网络的输电线路障碍物检测方法,包括如下步骤:基于输电线路巡检机器人搭载的ZED双目摄像头采集输电线路障碍物图像;对采集到的输电线路障碍物图像进行预处理并制成数据集;搭建YN‑Net卷积神经网络,对YN‑Net卷积神经网络进行充分训练,得到训练好的YN‑Net卷积神经网络模型;使用YN‑Net卷积神经网络模型对采集到的输电线路障碍物实时图像进行分类,根据输入图像中存在障碍物与不存在障碍物的概率值来判断输电线路巡检机器人前方是否存在障碍物。本发明能够提升卷积神经网络的实时性与可靠性,解决了目前输电线路障碍物检测算法准确率不高,实时性不好等问题,并且具有很高的可移植性,可应用于嵌入式开发平台,应用前景广泛。
-
公开(公告)号:CN117889867A
公开(公告)日:2024-04-16
申请号:CN202410304943.7
申请日:2024-03-18
Applicant: 南京师范大学
Abstract: 本发明公开了一种基于局部自注意力移动窗口算法的路径规划方法,获取当前作业环境的RGB图像,并进行预处理并变换为灰度图;进行边缘检测后获得二值化图像,通过激活函数得到边缘自注意力权重;根据灰度图分割后的图像块的海塞矩阵特征值的熵得到曲率自注意力权重;通过边缘自注意力权重和曲率自注意力权重改进自监督注意力语义分割网络,通过改进的网络获得含有语义信息的图像,根据连续时刻获得的图像预测障碍物的运动方向,从而选择机器人的运动方向。引入海塞矩阵的熵得到新的自注意力权重,加强物体边缘的分割;引入边缘检测得到的自注意力权重,加强图像中颜色变化较大部分的分割,提高边缘分割的准确性,从而提高避障的成功率。
-
公开(公告)号:CN112818871B
公开(公告)日:2024-03-29
申请号:CN202110153554.5
申请日:2021-02-04
Applicant: 南京师范大学
IPC: G06V20/40 , G06V20/52 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于半分组卷积的全融合神经网络的目标检测方法,包括:搭建半分组卷积模块;搭建全融合神经网络;获取电梯厢内目标物的数据集;将数据集中的图像按比例随机分为训练数据集和测试数据集,并对训练数据集图像中的目标物和人进行标注,生成标签文件,将训练数据集全部图像及标签文件输入全融合神经网络进行训练,得到训练好的权重文件;获得检测到的目标物和人在图像中的位置及检测置信度;筛选出可信的目标,去除重复的目标框,判断目标物是否已经进入电梯厢。本发明在保证特征提取的质量同时,有效减少了卷积运算的参数量,提高了计算速度;具有模型轻量、目标检测速度快、准确率高的优点,可应用在性能有限的嵌入式设备上。
-
公开(公告)号:CN117474883A
公开(公告)日:2024-01-30
申请号:CN202311475802.3
申请日:2023-11-07
Applicant: 南京师范大学
IPC: G06T7/00 , G06V10/774 , G06V10/82 , G06N3/0464 , G06V10/80 , G06V10/764 , G06V10/766
Abstract: 本发明公开了一种基于残差偏移网络自适应优化的绝缘子状态检测方法,包括:搭建残差偏移网络;采集变电站巡检视频数据并进行分帧处理生成复杂环境下不同材质绝缘子缺陷状态图像数据集;输入残差偏移网络中进行训练,得到训练好的残差偏移网络模型;搭建基于权重阈值的卷积核筛剪算法,并对残差偏移网络进行权重筛剪,得到目标检测识别模型;将变电站巡检视频分帧处理得到的测试集图像输入目标检测识别模型中进行检测识别,输出对于绝缘子异常状态的检测识别结果并验证实时性效果。本发明能够在变电站复杂场景下和资源受限的边缘设备中对小目标状态进行检测和识别,具有识别精度高、可扩展性强、响应速度快,环境抗干扰性强的优点。
-
公开(公告)号:CN116520849A
公开(公告)日:2023-08-01
申请号:CN202310626073.0
申请日:2023-05-30
Applicant: 南京师范大学
IPC: G05D1/02
Abstract: 本发明公开了一种基于双层数据结构的机器人实时最优轨迹规划方法,包括:获取机器人周围环境信息,提取障碍物边缘特征点并转化为一组封闭的多边形,连接可见性边形成局部可视图;对动态障碍物直接消除可见性边缘并重新连接可见性边缘再合并到全局层,并找到起点到终点的最短路径;同时分解横、纵向运动轨迹并对轨迹进行建模,将得到的最短路径转化为时间参数化轨迹,利用代价函数选择合适的控制点并计算各个轨迹的成本,获取局部最优轨迹,并以此作为局部层;检验局部最优轨迹的合理性,通过全局层获取到全局最优轨迹。本发明能够实现移动机器人在未知环境下找到最优行驶轨迹,具有实时性良好、低成本运算、运行效率高的优点。
-
公开(公告)号:CN115984558A
公开(公告)日:2023-04-18
申请号:CN202211683146.1
申请日:2022-12-27
Applicant: 南京师范大学
Abstract: 本发明公开了一种遮挡环境下的目标分割补全及识别方法,包括:采集遮挡环境下的两张连续视频序列图像,将图像从RGB空间转换到YCbCr颜色空间,提取Y分量进行归一化处理;进行均值聚类分割,获得两张遮挡环境下的分割图像;进行边缘提取与边缘跟踪,通过改进插值算法实现采摘目标的轮廓重建,再根据两张遮挡环境下轮廓重建的分割图像计算生成拟合矩形框;进行相对准确率的计算,对遮挡修复图像进行识别,获得遮挡环境下的采摘目标分割补全及识别图像。本发明为遮挡环境下的采摘目标分割补全及识别提供了一种有效方法,并且创新性地使用一种改进的插值算法对采摘目标进行轮廓补全,具有实用性强、轮廓补全精确度高、抗背景环境干扰能力强的优点。
-
-
-
-
-
-
-
-
-