-
公开(公告)号:CN118037736A
公开(公告)日:2024-05-14
申请号:CN202410439130.9
申请日:2024-04-12
Applicant: 南京师范大学
Abstract: 本发明公开了一种基于特征参数提取的金属增材制造熔池形态检测方法;获取金属增材制造熔池的图像,并进行预处理,获得预处理后的熔池图像;对预处理后的熔池图像进行像素识别,检测得到熔池边缘像素,基于熔池边缘像素获得熔池中心的坐标,并基于熔池边缘像素的方向向量得到熔池主方向角度;根据熔池中心的坐标、熔池边缘像素和熔池主方向角度进行椭圆拟合,得到拟合的椭圆的长轴和短轴;以拟合的椭圆的长轴和短轴作为对应熔池的长度和宽度,输出熔池形态。通过先提取熔池中心作为椭圆中心和熔池主方向倾角,减少拟合参数的同时提升了拟合效果,对熔池宽度拟合的准确性较高,提升了熔池特征参数的提取速度以及准确性。
-
公开(公告)号:CN119203845A
公开(公告)日:2024-12-27
申请号:CN202411675471.2
申请日:2024-11-21
Applicant: 南京师范大学
IPC: G06F30/28 , H02J3/38 , G06F17/10 , G06Q50/06 , G06F119/14 , G06F113/08 , G06F113/04
Abstract: 本发明公开了一种构网变流器的耦合摆映射模型及其暂态轨迹刻画方法,本发明以多构网型变流器并网暂态稳定性分析为目标,将传统构网型变流器功频模型映射至经典耦合摆模型,并通过耦合摆的动力学运动方程来刻画构网型变流器在扰动后的状态量暂态轨迹,从而分析大扰动下多构网型变流器的暂态稳定性。该方法将构网型变流器控制模型与机械摆系统运动模型进行对比,创新性地将构网型变流器并网暂态稳定性问题转化为机械系统的运动稳定性问题,从而避免构造复杂的Lyapunov函数,同时可将耦合摆系统的分析方法用于电气系统,为电气系统的稳定性分析提供新思路。
-
公开(公告)号:CN117391973A
公开(公告)日:2024-01-12
申请号:CN202311444732.5
申请日:2023-11-01
Applicant: 南京师范大学
IPC: G06T5/00 , G06T5/60 , G06T7/00 , G06N3/0464 , G06N3/048 , G06N3/0455
Abstract: 本发明公开了一种基于多尺度改进残差块CNN的图像去运动模糊方法,包括:采集并保存输电线路巡检机器人的电力巡检视频数据,制成数据集,并记为源数据集;将源数据集进行裁剪和压缩,得到清晰和模糊图像对,并记为电力巡检去模糊数据集;搭建多尺度改进残差块卷积神经网络,并使用电力巡检去模糊数据集对多尺度改进残差块卷积神经网络进行训练,得到训练好的多尺度改进残差块卷积神经网络模型;使用训练好的多尺度改进残差块卷积神经网络模型对电力巡检模糊图像数据进行去模糊。本发明提升了电力巡检图像去模糊的效果与准确性,适用于处理高压输电巡检机器人的巡检图像拍摄模糊问题,具有运算速度快、去运动模糊效果好、抗环境干扰能力强的优点。
-
公开(公告)号:CN117974740B
公开(公告)日:2024-07-02
申请号:CN202410385415.9
申请日:2024-04-01
Applicant: 南京师范大学 , 南京三万物联网科技有限公司
Abstract: 本发明公开了一种基于聚合式窗口自注意力机制的穴位定位方法,首先获取人体背部图像,并进行预处理,将预处理后的背部图像输入多尺度特征提取网络,得到背部特征图;多尺度特征提取网络包括若干特征图提取模块,预处理后的背部图像依次经过若干特征图提取模块的处理,每个特征图提取模块均包括聚合式窗口自注意力学习层;将背部特征图输入背部特征关键点检测网络进行背部特征关键点检测,得到背部特征关键点,通过背部穴位定位公式得到背部穴位具体坐标,实现背部穴位定位。在获取人体背部特征关键点特征中,针对关键点所处背部的位置,采用聚合式窗口自注意力学习方法,可以更加精准、快速的确定不同体型的人体背部的关键点位置。
-
公开(公告)号:CN118038103B
公开(公告)日:2024-06-14
申请号:CN202410432780.0
申请日:2024-04-11
Applicant: 南京师范大学
IPC: G06V10/762 , G06V10/74 , G06V10/764
Abstract: 本发明公开了一种基于改进动态扩展模型自适应算法的视觉回环检测方法,获取环境图像并进行标签定义,获得图像的特征标签矩阵;获取聚类图像,通过原图像与聚类图像之间的相似性计算,得到特征标签矩阵的非相似性值;并与阈值比较后进行特征标签矩阵划分;对划分后的强数据标签集合和正常数据标签集合进行改进的原型聚类处理,将正常数据标签集合聚类到聚类图像中的聚类中心附近,将强数据标签集合嵌套到距聚类图像中的聚类中心更远处,形成新的聚类图像;对处理后的图像实现视觉回环检测。采用改进的动态扩展模型自适应算法可排除未知目标域的强数据的污染干扰,保持正常数据样本匹配的精准稳定性,提高回环检测的精准性。
-
公开(公告)号:CN117944059B
公开(公告)日:2024-05-31
申请号:CN202410357453.3
申请日:2024-03-27
Applicant: 南京师范大学
IPC: B25J9/16 , G06V20/56 , G06V20/70 , G06V10/25 , G06V10/44 , G06V10/80 , G06V10/764 , G06V10/766 , G06V10/82 , G06T7/73 , G06N3/0464 , G06N3/0495 , G06N3/0455
Abstract: 本发明公开了一种基于视觉及雷达特征融合的轨迹规划方法,获取当前作业环境的视觉图像以及雷达点云,并进行预处理;将视觉图像经主干特征提取网络和图像特征金字塔网络处理得到高级特征图和雷达点云经激光点云特征提取网络处理得到点云特征图进行融合;根据候选框对融合特征后的特征图进行目标检测与识别;利用轻量级优化卷积神经网络对特征图进行语义分割;通过目标识别与语义分割确定识别目标的类别和位置,规划机器人的下一步行进轨迹。采用了高效的神经网络结构,多源传感器数据进行融合,并提供了新的轻量级深度神经网络架构和前景像素判断优化算法,能有效提高图像目标检测识别及语义分割的精度和速度,具有广泛的应用前景。
-
公开(公告)号:CN118038103A
公开(公告)日:2024-05-14
申请号:CN202410432780.0
申请日:2024-04-11
Applicant: 南京师范大学
IPC: G06V10/762 , G06V10/74 , G06V10/764
Abstract: 本发明公开了一种基于改进动态扩展模型自适应算法的视觉回环检测方法,获取环境图像并进行标签定义,获得图像的特征标签矩阵;获取聚类图像,通过原图像与聚类图像之间的相似性计算,得到特征标签矩阵的非相似性值;并与阈值比较后进行特征标签矩阵划分;对划分后的强数据标签集合和正常数据标签集合进行改进的原型聚类处理,将正常数据标签集合聚类到聚类图像中的聚类中心附近,将强数据标签集合嵌套到距聚类图像中的聚类中心更远处,形成新的聚类图像;对处理后的图像实现视觉回环检测。采用改进的动态扩展模型自适应算法可排除未知目标域的强数据的污染干扰,保持正常数据样本匹配的精准稳定性,提高回环检测的精准性。
-
公开(公告)号:CN119203845B
公开(公告)日:2025-02-14
申请号:CN202411675471.2
申请日:2024-11-21
Applicant: 南京师范大学
IPC: G06F30/28 , H02J3/38 , G06F17/10 , G06Q50/06 , G06F119/14 , G06F113/08 , G06F113/04
Abstract: 本发明公开了一种构网变流器的耦合摆映射模型及其暂态轨迹刻画方法,本发明以多构网型变流器并网暂态稳定性分析为目标,将传统构网型变流器功频模型映射至经典耦合摆模型,并通过耦合摆的动力学运动方程来刻画构网型变流器在扰动后的状态量暂态轨迹,从而分析大扰动下多构网型变流器的暂态稳定性。该方法将构网型变流器控制模型与机械摆系统运动模型进行对比,创新性地将构网型变流器并网暂态稳定性问题转化为机械系统的运动稳定性问题,从而避免构造复杂的Lyapunov函数,同时可将耦合摆系统的分析方法用于电气系统,为电气系统的稳定性分析提供新思路。
-
公开(公告)号:CN118037736B
公开(公告)日:2024-06-14
申请号:CN202410439130.9
申请日:2024-04-12
Applicant: 南京师范大学
Abstract: 本发明公开了一种基于特征参数提取的金属增材制造熔池形态检测方法;获取金属增材制造熔池的图像,并进行预处理,获得预处理后的熔池图像;对预处理后的熔池图像进行像素识别,检测得到熔池边缘像素,基于熔池边缘像素获得熔池中心的坐标,并基于熔池边缘像素的方向向量得到熔池主方向角度;根据熔池中心的坐标、熔池边缘像素和熔池主方向角度进行椭圆拟合,得到拟合的椭圆的长轴和短轴;以拟合的椭圆的长轴和短轴作为对应熔池的长度和宽度,输出熔池形态。通过先提取熔池中心作为椭圆中心和熔池主方向倾角,减少拟合参数的同时提升了拟合效果,对熔池宽度拟合的准确性较高,提升了熔池特征参数的提取速度以及准确性。
-
公开(公告)号:CN117974740A
公开(公告)日:2024-05-03
申请号:CN202410385415.9
申请日:2024-04-01
Applicant: 南京师范大学 , 南京三万物联网科技有限公司
Abstract: 本发明公开了一种基于聚合式窗口自注意力机制的穴位定位方法,首先获取人体背部图像,并进行预处理,将预处理后的背部图像输入多尺度特征提取网络,得到背部特征图;多尺度特征提取网络包括若干特征图提取模块,预处理后的背部图像依次经过若干特征图提取模块的处理,每个特征图提取模块均包括聚合式窗口自注意力学习层;将背部特征图输入背部特征关键点检测网络进行背部特征关键点检测,得到背部特征关键点,通过背部穴位定位公式得到背部穴位具体坐标,实现背部穴位定位。在获取人体背部特征关键点特征中,针对关键点所处背部的位置,采用聚合式窗口自注意力学习方法,可以更加精准、快速的确定不同体型的人体背部的关键点位置。
-
-
-
-
-
-
-
-
-