轨迹注意力目标跟踪方法、装置及可读介质

    公开(公告)号:CN116740142A

    公开(公告)日:2023-09-12

    申请号:CN202310741844.0

    申请日:2023-06-21

    Applicant: 华侨大学

    Abstract: 本发明公开了一种轨迹注意力目标跟踪方法、装置及可读介质,通过特征提取网络分别对历史帧及其前景‑背景掩膜图和查询帧进行特征提取,得到历史特征图、前景‑背景掩膜特征图和查询特征图;空间注意力模块用于结合历史特征图、前景‑背景掩膜特征图和查询特征图匹配目标特征,并利用目标聚焦策略建立空间依赖关系,得到附有空间权重的历史特征图,时序注意力模块用于对时序交互后的时序响应图进行时序信息交互,得到时序交互后的时序响应图,通道融合模块用于对时序交互后的时序响应图与查询特征图进行融合,得到目标响应图;将目标响应图输入头网络预测得到目标的位置和边界框。本发明可避免空间冗余信息的干扰,有效提升辨别能力。

    掩模与语义协同优化扩散模型的石材表面瑕疵检测方法

    公开(公告)号:CN119477922B

    公开(公告)日:2025-04-22

    申请号:CN202510067481.6

    申请日:2025-01-16

    Applicant: 华侨大学

    Abstract: 本发明提供掩模与语义协同优化扩散模型的石材表面瑕疵检测方法,属于瑕疵检测领域,包括:获取数据集;将输入图片输入编码器以得到输入表征,对输入表征进行高斯噪声向前扩散得到全噪声表征;将各输入表征与掩模图片点乘后输入掩模引导的知识提炼网络以生成掩模表征;将输入表征输入含多维特征金字塔的语义引导增强网络以得到语义表征;将全噪声表征、掩膜表征和语义表征进行拼接后,进行反向扩散以逐步去除噪声,并解码生成重建图片;将输入图片及其对应的重建图片均输入特征提取网络,进而计算得到异常得分;根据异常得分进行排序并形成异常得分列表,将异常得分列表对应的输入图片的热力图反馈至用户。本发明能够有效提升对瑕疵的检测精度。

    特征强化的跨窗口轻量级超分辨率方法、系统及电子设备

    公开(公告)号:CN119180753B

    公开(公告)日:2025-03-14

    申请号:CN202411681831.X

    申请日:2024-11-22

    Applicant: 华侨大学

    Abstract: 本发明涉及图像超分辨率技术领域,公开了一种特征强化的跨窗口轻量级超分辨率方法、系统及电子设备,方法包括以下步骤:构建基于Token字典交叉的自注意力机制,并引入Token分组机制,组成基于Token分组的字典交叉自注意力模块,即TDAB模块;基于TDAB模块构建特征强化的跨窗口轻量级超分辨率网络;使用所述特征强化的跨窗口轻量级超分辨率网络对待重建的低分辨率图像进行重建,得到重建结果。本方法在经典超分辨率方法的基础上引入基于Token字典交叉的自注意力机制、基于Token分组的混合注意力模块,在使模型更轻量化的同时增强了模型对于跨越窗口依赖的捕获能力以及对于纹理细节特征的重建效果。

    基于特征蒸馏和层间信息交互的轻量级图像超分辨率方法

    公开(公告)号:CN119359547A

    公开(公告)日:2025-01-24

    申请号:CN202411936474.7

    申请日:2024-12-26

    Applicant: 华侨大学

    Abstract: 本发明设计图像处理技术领域,公开了一种基于特征蒸馏和层间信息交互的轻量级图像超分辨率方法,包括以下步骤:构建动态非对称蒸馏模块和层间全维信息交互模块;基于动态非对称蒸馏模块和层间全维信息交互模块构建轻量级图像超分辨率网络;利用所述轻量级图像超分辨率网络实现图像超分辨率;其中,所述轻量级图像超分辨率网络利用卷积层对输入的低分辨率图像进行浅层特征提取,利用动态非对称蒸馏模块和层间全维信息交互模块对浅层特征进行深层特征提取,利用卷积层和上采样对深层特征进行图像重建,得到高分辨率图像。本发明以更轻量、更有效的方式提取关键特征,从而实现在提升重建效果的同时,最小化计算开销和参数量。

    基于混合池化Transformer的轻量级图像超分辨率方法及装置

    公开(公告)号:CN119251050A

    公开(公告)日:2025-01-03

    申请号:CN202411283089.7

    申请日:2024-09-13

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于混合池化Transformer的轻量级图像超分辨率方法及装置,涉及图像处理领域,包括:构建基于混合池化Transformer的轻量级图像超分辨率模型并训练,得到经训练的轻量级图像超分辨率模型;获取待重建的低分辨率图像和尺度因子并输入到经训练的轻量级图像超分辨率模型,低分辨率图像输入第一卷积层,得到第一卷积层的输出特征,第一卷积层的输出特征经过若干个基于混合池化的Transformer模块后,得到最后一个基于混合池化的Transformer模块的输出特征,最后一个基于混合池化的Transformer模块的输出特征与第一卷积层的输出特征相加后依次经过亚像素卷积层和第二卷积层,得到高分辨率重建图像。本发明解决了现有Transformer方法计算复杂度过高的问题。

    特征强化的跨窗口轻量级超分辨率方法、系统及电子设备

    公开(公告)号:CN119180753A

    公开(公告)日:2024-12-24

    申请号:CN202411681831.X

    申请日:2024-11-22

    Applicant: 华侨大学

    Abstract: 本发明涉及图像超分辨率技术领域,公开了一种特征强化的跨窗口轻量级超分辨率方法、系统及电子设备,方法包括以下步骤:构建基于Token字典交叉的自注意力机制,并引入Token分组机制,组成基于Token分组的字典交叉自注意力模块,即TDAB模块;基于TDAB模块构建特征强化的跨窗口轻量级超分辨率网络;使用所述特征强化的跨窗口轻量级超分辨率网络对待重建的低分辨率图像进行重建,得到重建结果。本方法在经典超分辨率方法的基础上引入基于Token字典交叉的自注意力机制、基于Token分组的混合注意力模块,在使模型更轻量化的同时增强了模型对于跨越窗口依赖的捕获能力以及对于纹理细节特征的重建效果。

    基于多目标跟踪的流行病调查预测方法、装置及可读介质

    公开(公告)号:CN117476250B

    公开(公告)日:2024-03-12

    申请号:CN202311764347.9

    申请日:2023-12-21

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于多目标跟踪的流行病调查预测方法、装置及可读介质,涉及图像处理领域,包括:获取目标场景区域的视频数据并进行目标检测以及目标跟踪,得到多目标跟踪结果;基于多目标跟踪结果构建目标场景区域中出现的人员在每个时间步所对应的接触网络;构建当前时间步所对应的传染病动力学模型,若存在感染者,则获取感染者在下个时间步的轨迹数据,根据感染者在下个时间步的轨迹数据和下个时间步的接触网络动态调整当前时间步所对应的传染病动力学模型,得到下个时间步所对应的传染病动力学模型,确定下个时间步的感染者的接触者及其轨迹数据,以解决现有模型无法精确模拟出感染者以及接触者的活动空间的问题。

    基于交叉注意力机制的图像超分辨率方法及装置

    公开(公告)号:CN117237197B

    公开(公告)日:2024-03-01

    申请号:CN202311475296.8

    申请日:2023-11-08

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于交叉注意力机制与Swin‑Transformer的图像超分辨率方法及装置,涉及图像重建领域,该方法包括:获取待重建的低分辨率图像及其对应的梯度图;构建基于交叉注意力机制与Swin‑Transformer的图像超分辨率模型并训练,得到经训练的图像超分辨率模型;将待重建的低分辨率图像输入经训练的图像超分辨率模型,经训练的图像超分辨率模型包括SR分支和梯度分支,SR分支和梯度分支中分别采用浅层特征提取模块提取低分辨率图像及其对应的梯度图的浅层特征,通过全局深层特征提取模块将浅层特征进行融合,得到深层特征,并输入图像重建模块,重建得到高分辨率图像,解决

    全尺度特征细化轻量级图像超分辨率方法及装置

    公开(公告)号:CN117196960A

    公开(公告)日:2023-12-08

    申请号:CN202311475299.1

    申请日:2023-11-08

    Applicant: 华侨大学

    Abstract: 本发明公开了一种全尺度特征细化轻量级图像超分辨率方法及装置,涉及图像处理领域,该方法包括:构建全尺度特征细化轻量级图像超分辨率模型并训练,得到经训练的全尺度特征细化轻量级图像超分辨率模型,将低分辨率图像输入经训练的全尺度特征细化轻量级图像超分辨率模型,先经过第一卷积层得到第一特征图,第一特征图经过串联的K个特征蒸馏提取模块,每一个特征蒸馏提取模块的输出均传送至第二卷积层,并经过第三卷积层,得到第二特征图,第二特征图与第一特征图相加,得到最终特征图,最终特征图输入上采样模块,重建得到高分辨率图像,解决原有超分辨率模型提取的特征信息过于单一的问题,通过蒸馏剔除冗余特征,使模型更加轻量化。

    基于深层交互注意力机制的目标跟踪方法、装置及可读介质

    公开(公告)号:CN117036416A

    公开(公告)日:2023-11-10

    申请号:CN202311082425.7

    申请日:2023-08-25

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于深层交互注意力机制的目标跟踪方法、装置及可读介质,该方法包括:获取视频序列,并分别从视频序列和第一帧中提取当前帧和模板帧;构建目标跟踪模型并训练,目标跟踪模型包括特征提取模块、Sim模块、判别定位模块和通道微调模块;将当前帧和模板帧输入经训练的目标跟踪模型,通过特征提取模块提取若干特征,将若干特征中的其中一个特征和模板帧输入Sim模块,得到前景特征图和前景概率特征图,将若干特征中的其中一个特征和模板帧输入判别定位模块,得到定位特征图,将前景特征图、前景概率特征图和定位特征图进行融合,得到混合特征图,将若干特征中的其余特征与混合特征图输入通道微调模块,得到目标跟踪结果,提高鲁棒性。

Patent Agency Ranking