基于特征蒸馏和层间信息交互的轻量级图像超分辨率方法

    公开(公告)号:CN119359547B

    公开(公告)日:2025-05-02

    申请号:CN202411936474.7

    申请日:2024-12-26

    Applicant: 华侨大学

    Abstract: 本发明设计图像处理技术领域,公开了一种基于特征蒸馏和层间信息交互的轻量级图像超分辨率方法,包括以下步骤:构建动态非对称蒸馏模块和层间全维信息交互模块;基于动态非对称蒸馏模块和层间全维信息交互模块构建轻量级图像超分辨率网络;利用所述轻量级图像超分辨率网络实现图像超分辨率;其中,所述轻量级图像超分辨率网络利用卷积层对输入的低分辨率图像进行浅层特征提取,利用动态非对称蒸馏模块和层间全维信息交互模块对浅层特征进行深层特征提取,利用卷积层和上采样对深层特征进行图像重建,得到高分辨率图像。本发明以更轻量、更有效的方式提取关键特征,从而实现在提升重建效果的同时,最小化计算开销和参数量。

    一种基于稳定扩散的真实世界图像超分辨率方法

    公开(公告)号:CN118918009B

    公开(公告)日:2025-02-25

    申请号:CN202411413946.0

    申请日:2024-10-11

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于稳定扩散的真实世界图像超分辨率方法,涉及图像超分辨率技术领域,具体通过构建并训练增强先验引导扩散模型实现;所述增强先验引导扩散模型实现真实世界图像超分辨率的过程为:预处理模块根据低分辨率图像生成预处理图像,分割模块根据预处理图像生成对应的分割掩码图像,注意力融合模块根据预处理图像和分割掩码图像的潜在特征生成融合潜在特征;语义提示提取器从预处理图像提取高质量语义提示词输入去噪主干网络;控制网络基于融合潜在特征对去噪主干网络进行特征调制;去噪主干网络输出高分辨率图像。本发明在真实世界图像超分辨率任务上更注重图像高频细节和结构层次,保证了复原图像的真实性与一致性。

    基于梯度一致感知的空频域特征混合图像超分辨率方法

    公开(公告)号:CN118967453A

    公开(公告)日:2024-11-15

    申请号:CN202411448384.3

    申请日:2024-10-17

    Applicant: 华侨大学

    Abstract: 本发明涉及图像超分辨率技术领域,公开了一种基于梯度一致感知的空频域特征混合图像超分辨率方法,包括:构建空频域特征混合图像超分辨率网络,包括超分辨率分支和回归分支,超分辨率分支采用空频域特征混合模块对低分辨率图像提取不同尺度的混合特征,回归分支基于混合特征获得全分辨率图像,并基于不同尺度的混合特征重建低分辨率梯度图,所述低分辨率梯度图用于构建梯度一致感知学习损失函数,以训练所述空频域特征混合图像超分辨率网络。本发明全局挖掘可利用的高频信息,并对高分辨率梯度图以及重建的低分辨率梯度图施加一阶束缚,从而探索层次特征之间的全局依赖关系。

    基于稳定扩散模型的快速人脸图像超分辨率方法及系统

    公开(公告)号:CN119006292A

    公开(公告)日:2024-11-22

    申请号:CN202411484614.1

    申请日:2024-10-23

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于稳定扩散模型的快速人脸图像超分辨率方法及系统,涉及图像超分辨技术领域,方法包括以下步骤:构建基于稳定扩散模型的人脸图像超分辨率模型,包括稳定扩散模型、引导提取模块和引导注入模块,引导提取模块根据输入的人脸低分辨率图像生成视觉引导和文本引导,引导注入模块将视觉引导和文本引导注入到稳定扩散模型,稳定扩散模型基于视觉引导和文本引导生成复原图像作为人脸高分辨率图像;对人脸图像超分辨率模型进行训练;利用训练好的人脸图像超分辨率模型实现快速人脸图像超分辨率。本发明结合视觉引导和文本引导来微调稳定扩散模型,不仅可以大幅提升人脸图像的真实性并保持相当的一致性,并且加快了复原速度。

    一种基于扩散生成模型的快速人脸图像复原方法及系统

    公开(公告)号:CN118279178A

    公开(公告)日:2024-07-02

    申请号:CN202410675877.4

    申请日:2024-05-29

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于扩散生成模型的快速人脸图像复原方法及系统,涉及图像复原领域,方法包括以下步骤:制作数据集与选择预训练模型,以获得预训练扩散生成模型;基于预训练扩散生成模型获得快速人脸图像复原模型;利用快速人脸图像复原模型实现对于失真人脸图像的快速复原;所述基于预训练扩散生成模型获得快速人脸图像复原模型,包括:在预训练扩散生成模型的前向加噪模块中添加普罗米修斯随机微分方程,以及在预训练扩散生成模型的反向去噪模块中添加条件引导投影。本发明不仅可以实现复原图像真实性与一致性的保障,而且能大幅度缩短图像复原所需要的时间。

    一种基于复合Transformer的图像超分辨率方法及系统

    公开(公告)号:CN118229532A

    公开(公告)日:2024-06-21

    申请号:CN202410626959.X

    申请日:2024-05-21

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于复合Transformer的图像超分辨率方法及系统,涉及图像超分辨率领域,方法包括以下步骤:构建基于复合Transformer的图像超分辨率网络;利用基于复合Transformer的图像超分辨率网络实现对于低分辨率图像的超分辨率重建,输出对应的高分辨率图像;所述基于复合Transformer的图像超分辨率网络包括依次连接的浅层特征提取模块、深层特征提取模块和图像重建模块,其中,深层特征提取模块包括若干依次连接的残差组,每个残差组包括残差复合Transformer和整合Transformer,残差复合Transformer包括空间多头注意力和通道组注意力层,整合Transformer包括整合自注意力和卷积前馈网络。本发明通过残差复合Transformer在空间和通道维度上聚合特征;通过整合Transformer减少通道数量而不会丢失空间信息,重建高质量的高分辨率图像。

    基于梯度一致感知的空频域特征混合图像超分辨率方法

    公开(公告)号:CN118967453B

    公开(公告)日:2025-02-21

    申请号:CN202411448384.3

    申请日:2024-10-17

    Applicant: 华侨大学

    Abstract: 本发明涉及图像超分辨率技术领域,公开了一种基于梯度一致感知的空频域特征混合图像超分辨率方法,包括:构建空频域特征混合图像超分辨率网络,包括超分辨率分支和回归分支,超分辨率分支采用空频域特征混合模块对低分辨率图像提取不同尺度的混合特征,回归分支基于混合特征获得全分辨率图像,并基于不同尺度的混合特征重建低分辨率梯度图,所述低分辨率梯度图用于构建梯度一致感知学习损失函数,以训练所述空频域特征混合图像超分辨率网络。本发明全局挖掘可利用的高频信息,并对高分辨率梯度图以及重建的低分辨率梯度图施加一阶束缚,从而探索层次特征之间的全局依赖关系。

    一种基于复合Transformer的图像超分辨率方法及系统

    公开(公告)号:CN118229532B

    公开(公告)日:2024-10-22

    申请号:CN202410626959.X

    申请日:2024-05-21

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于复合Transformer的图像超分辨率方法及系统,涉及图像超分辨率领域,方法包括:构建基于复合Transformer的图像超分辨率网络;利用图像超分辨率网络实现对于低分辨率图像的超分辨率重建,输出对应的高分辨率图像;所述图像超分辨率网络包括浅层特征提取模块、深层特征提取模块和图像重建模块,其中,深层特征提取模块包括若干残差组,残差组包括空间多头注意力和通道组注意力层组成的残差复合Transformer以及整合自注意力和卷积前馈网络组成的整合Transformer。本发明通过残差组在空间和通道维度上聚合特征,减少通道数量从而不会丢失空间信息,重建高质量的高分辨率图像。

    基于稳定扩散模型的快速人脸图像超分辨率方法及系统

    公开(公告)号:CN119006292B

    公开(公告)日:2025-02-14

    申请号:CN202411484614.1

    申请日:2024-10-23

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于稳定扩散模型的快速人脸图像超分辨率方法及系统,涉及图像超分辨技术领域,方法包括以下步骤:构建基于稳定扩散模型的人脸图像超分辨率模型,包括稳定扩散模型、引导提取模块和引导注入模块,引导提取模块根据输入的人脸低分辨率图像生成视觉引导和文本引导,引导注入模块将视觉引导和文本引导注入到稳定扩散模型,稳定扩散模型基于视觉引导和文本引导生成复原图像作为人脸高分辨率图像;对人脸图像超分辨率模型进行训练;利用训练好的人脸图像超分辨率模型实现快速人脸图像超分辨率。本发明结合视觉引导和文本引导来微调稳定扩散模型,不仅可以大幅提升人脸图像的真实性并保持相当的一致性,并且加快了复原速度。

    一种基于稳定扩散的真实世界图像超分辨率方法

    公开(公告)号:CN118918009A

    公开(公告)日:2024-11-08

    申请号:CN202411413946.0

    申请日:2024-10-11

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于稳定扩散的真实世界图像超分辨率方法,涉及图像超分辨率技术领域,具体通过构建并训练增强先验引导扩散模型实现;所述增强先验引导扩散模型实现真实世界图像超分辨率的过程为:预处理模块根据低分辨率图像生成预处理图像,分割模块根据预处理图像生成对应的分割掩码图像,注意力融合模块根据预处理图像和分割掩码图像的潜在特征生成融合潜在特征;语义提示提取器从预处理图像提取高质量语义提示词输入去噪主干网络;控制网络基于融合潜在特征对去噪主干网络进行特征调制;去噪主干网络输出高分辨率图像。本发明在真实世界图像超分辨率任务上更注重图像高频细节和结构层次,保证了复原图像的真实性与一致性。

Patent Agency Ranking