-
公开(公告)号:CN118967453B
公开(公告)日:2025-02-21
申请号:CN202411448384.3
申请日:2024-10-17
Applicant: 华侨大学
IPC: G06T3/4076 , G06N3/048 , G06T3/4046 , G06T3/4084
Abstract: 本发明涉及图像超分辨率技术领域,公开了一种基于梯度一致感知的空频域特征混合图像超分辨率方法,包括:构建空频域特征混合图像超分辨率网络,包括超分辨率分支和回归分支,超分辨率分支采用空频域特征混合模块对低分辨率图像提取不同尺度的混合特征,回归分支基于混合特征获得全分辨率图像,并基于不同尺度的混合特征重建低分辨率梯度图,所述低分辨率梯度图用于构建梯度一致感知学习损失函数,以训练所述空频域特征混合图像超分辨率网络。本发明全局挖掘可利用的高频信息,并对高分辨率梯度图以及重建的低分辨率梯度图施加一阶束缚,从而探索层次特征之间的全局依赖关系。
-
公开(公告)号:CN119006292B
公开(公告)日:2025-02-14
申请号:CN202411484614.1
申请日:2024-10-23
Applicant: 华侨大学
IPC: G06T3/4076 , G06N3/0455 , G06N3/0464 , G06T3/4046 , G06T5/60 , G06T5/77
Abstract: 本发明公开了一种基于稳定扩散模型的快速人脸图像超分辨率方法及系统,涉及图像超分辨技术领域,方法包括以下步骤:构建基于稳定扩散模型的人脸图像超分辨率模型,包括稳定扩散模型、引导提取模块和引导注入模块,引导提取模块根据输入的人脸低分辨率图像生成视觉引导和文本引导,引导注入模块将视觉引导和文本引导注入到稳定扩散模型,稳定扩散模型基于视觉引导和文本引导生成复原图像作为人脸高分辨率图像;对人脸图像超分辨率模型进行训练;利用训练好的人脸图像超分辨率模型实现快速人脸图像超分辨率。本发明结合视觉引导和文本引导来微调稳定扩散模型,不仅可以大幅提升人脸图像的真实性并保持相当的一致性,并且加快了复原速度。
-
公开(公告)号:CN119006292A
公开(公告)日:2024-11-22
申请号:CN202411484614.1
申请日:2024-10-23
Applicant: 华侨大学
IPC: G06T3/4076 , G06N3/0455 , G06N3/0464 , G06T3/4046 , G06T5/60 , G06T5/77
Abstract: 本发明公开了一种基于稳定扩散模型的快速人脸图像超分辨率方法及系统,涉及图像超分辨技术领域,方法包括以下步骤:构建基于稳定扩散模型的人脸图像超分辨率模型,包括稳定扩散模型、引导提取模块和引导注入模块,引导提取模块根据输入的人脸低分辨率图像生成视觉引导和文本引导,引导注入模块将视觉引导和文本引导注入到稳定扩散模型,稳定扩散模型基于视觉引导和文本引导生成复原图像作为人脸高分辨率图像;对人脸图像超分辨率模型进行训练;利用训练好的人脸图像超分辨率模型实现快速人脸图像超分辨率。本发明结合视觉引导和文本引导来微调稳定扩散模型,不仅可以大幅提升人脸图像的真实性并保持相当的一致性,并且加快了复原速度。
-
公开(公告)号:CN118229531B
公开(公告)日:2024-09-17
申请号:CN202410609646.3
申请日:2024-05-16
Applicant: 华侨大学
IPC: G06T3/4053 , G06N3/0455 , G06N3/0464 , G06T3/4046 , G06V10/44
Abstract: 本发明公开了一种基于局部增强Transformer的图像超分辨率方法及系统,涉及图像超分辨技术领域,方法包括以下步骤:构建基于局部增强Transformer的图像超分辨率网络;输入低分辨率图像,图像超分辨率网络根据低分辨率图像重建对应的高分辨率图像;其中,所述图像超分辨率网络包括依次连接的浅层特征提取模块、深层特征提取模块和图像重建模块;其中,浅层特征提取模块利用卷积层提取浅层特征,深层特征提取模块利用多个局部增强自注意力单元提取深层特征,每个局部增强自注意力单元包括多个Transformer层和一个3×3卷积组成,图像重建模块采用卷积实现重建。本发明利用局部增强Transformer来提取丰富的全局与局部特征,从而使网络兼顾图像的全局与局部细节。
-
公开(公告)号:CN118229531A
公开(公告)日:2024-06-21
申请号:CN202410609646.3
申请日:2024-05-16
Applicant: 华侨大学
IPC: G06T3/4053 , G06N3/0455 , G06N3/0464 , G06T3/4046 , G06V10/44
Abstract: 本发明公开了一种基于局部增强Transformer的图像超分辨率方法及系统,涉及图像超分辨技术领域,方法包括以下步骤:构建基于局部增强Transformer的图像超分辨率网络;输入低分辨率图像,图像超分辨率网络根据低分辨率图像重建对应的高分辨率图像;其中,所述图像超分辨率网络包括依次连接的浅层特征提取模块、深层特征提取模块和图像重建模块;其中,浅层特征提取模块利用卷积层提取浅层特征,深层特征提取模块利用多个局部增强自注意力单元提取深层特征,每个局部增强自注意力单元包括多个Transformer层和一个3×3卷积组成,图像重建模块采用卷积实现重建。本发明利用局部增强Transformer来提取丰富的全局与局部特征,从而使网络兼顾图像的全局与局部细节。
-
公开(公告)号:CN118967453A
公开(公告)日:2024-11-15
申请号:CN202411448384.3
申请日:2024-10-17
Applicant: 华侨大学
IPC: G06T3/4076 , G06N3/048 , G06T3/4046 , G06T3/4084
Abstract: 本发明涉及图像超分辨率技术领域,公开了一种基于梯度一致感知的空频域特征混合图像超分辨率方法,包括:构建空频域特征混合图像超分辨率网络,包括超分辨率分支和回归分支,超分辨率分支采用空频域特征混合模块对低分辨率图像提取不同尺度的混合特征,回归分支基于混合特征获得全分辨率图像,并基于不同尺度的混合特征重建低分辨率梯度图,所述低分辨率梯度图用于构建梯度一致感知学习损失函数,以训练所述空频域特征混合图像超分辨率网络。本发明全局挖掘可利用的高频信息,并对高分辨率梯度图以及重建的低分辨率梯度图施加一阶束缚,从而探索层次特征之间的全局依赖关系。
-
-
-
-
-