-
公开(公告)号:CN106202804A
公开(公告)日:2016-12-07
申请号:CN201610586987.9
申请日:2016-07-22
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
CPC classification number: Y02T90/50 , G06F17/5095 , G06F17/5036 , G06F2217/80 , G06Q10/04
Abstract: 基于数据库的复杂外形飞行器分布式热环境参数预测方法,属于航天器热环境设计领域。该方法建立飞行器表面热流数据库,利用POD方法对数据库进行降阶处理,得到数据库的正交基向量,结合相应的基系数插值方法,能够快速沿弹道预测飞行器表面热环境参数。该方法能够真实的反映出复杂外形飞行器表面各点气动热环境空间分布特征及干扰特征,和数值结果对比表明,该方法能够大幅提高计算效率,并且不损失预测精度。通过沿弹道各点为防热温度场计算提供表面分布式热流,能够得到更加精细的温度分布,从而提高整个防隔热系统的设计水平。
-
公开(公告)号:CN107103117B
公开(公告)日:2020-09-18
申请号:CN201710188360.2
申请日:2017-03-27
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G06F30/15 , G06F119/08
Abstract: 本发明公开了一种高超声速飞行器控制舵缝隙的热环境设计方法,包括:基于飞行器简化外形,采用气动热工程预示方法开展气动热环境预示,得到气动热工程预示结果;根据气动热工程预示结果确定控制舵舵轴截面位置流态沿弹道的变化,针对流态发生变化的弹道时间段,对多组典型弹道点开展不同流态情况下真实外形的飞行器热环境数值计算,得到飞行器控制舵缝隙区域的热流分布;选用层流流态开展控制舵缝隙区域的热环境数值计算,根据计算结果对气动热工程预示结果进行修正;根据修正结果对控制舵缝隙区域的热环境沿弹道进行设计。通过本发明解决了高超声速滑翔飞行器弹道条件下控制舵舵缝隙区域流态复杂、难以预测,并且热环境严重,造成局部防热风险较难评估的问题。
-
公开(公告)号:CN108132112B
公开(公告)日:2019-12-20
申请号:CN201711115268.X
申请日:2017-11-13
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Inventor: 李宇 , 陈伟华 , 黄建栋 , 刘国仟 , 聂亮 , 刘宇飞 , 檀妹静 , 景丽 , 高扬 , 聂春生 , 颜维旭 , 陈轩 , 周禹 , 曹占伟 , 王振峰 , 季妮芝 , 高翔宇 , 于明星 , 闵昌万 , 陈敏
Abstract: 本发明提供了一种高超声速飞行器表面热流辨识装置及设计方法,属于高超声速飞行器热参数测量技术领域。该装置包括:热传导敏感元件、敏感元件隔热套、敏感元件压板、温度传感器,热传导敏感元件为柱状结构,敏感元件隔热套为带通孔的柱状结构,热传导敏感元件位于敏感元件隔热套通孔中,与敏感元件隔热套间隙配合,敏感元件一侧与隔热套外表面平齐,形成测量端面,另一侧底部安装有温度传感器,敏感元件压板压住热传导敏感元件,与敏感元件隔热套间隙配合安装,敏感元件隔热套、敏感元件与敏感元件隔热套之间的间隙以及敏感元件压板共同阻隔热传导敏感元件除测量端面以外的部分与外部环境之间热量交换。本发明克服了传统热流传感器对于长时间高热流测量的适应性差以及传感器尺寸大、重量大、安装受限大、难以实现密集测量问题。
-
公开(公告)号:CN106202807B
公开(公告)日:2019-06-18
申请号:CN201610589156.7
申请日:2016-07-22
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G06F17/50
Abstract: 判别航天器身部激波/前缘类激波干扰发生条件及类型的方法,属于航天器气动热环境分析领域。该方法根据激波关系式建立了身部激波/前缘类激波干扰发生条件与飞行状态和气动外形的定量关系,对身部激波/前缘类激波干扰发生条件作出快速判别并给出干扰作用位置;建立了身部激波/前缘类激波干扰类型判别特征参数与飞行状态和气动外形参数的关联关系,根据不同类型身部激波/前缘类激波干扰流动结构特征,对干扰类型作出快速判别,本发明方法可大大缩减身部激波/前缘类激波干扰发生条件及类型的判别周期,降低判别难度,提高设计效率。
-
公开(公告)号:CN106706166B
公开(公告)日:2019-04-30
申请号:CN201611024191.0
申请日:2016-11-14
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G01K17/06
Abstract: 适用于高焓中低热流环境的陶瓷壁面复合塞式热流传感器,涉及陶瓷壁面热流传感器设计领域;热流传感器包括石墨烯柱、刚性陶瓷隔热套、紫铜柱、热电偶、陶瓷涂层;其中,石墨烯柱的轴向一端与紫铜柱固定连接,石墨烯柱的轴向另一端覆盖有陶瓷涂层;在石墨烯柱的外侧壁和紫铜柱远离石墨烯柱的轴向端面包覆有刚性陶瓷隔热套;在紫铜柱的端面设置有热电偶;本发明解决了无法直接在紫铜柱表面制备陶瓷涂层的问题,缓解平面方向的热扩散,有效规避了陶瓷材料导热系数小,热响应慢的问题,为高超声速飞行器地面防热试验提供了更加精确的测热传感器。
-
公开(公告)号:CN109538416A
公开(公告)日:2019-03-29
申请号:CN201811276416.0
申请日:2018-10-30
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: F03D9/11
Abstract: 本发明公开了一种基于椭圆截面杆涡激振动特性的风力发电装置,其特征在于,所述风力发电装置包括底座、风能捕获装置、支撑风能捕获装置的弹性支撑杆、所述弹性支撑杆表面安装柔性压电材料,所述弹性支撑杆与底座连接处安装转动装置,使弹性支撑杆在底座上进行[-90°,90°]转动。该装置相比于圆形截面杆能更有效地捕获风能,可以根据使用需求实现振动状态的快速调节,并利用压电材料将能量最终转化为电能。
-
公开(公告)号:CN107958102A
公开(公告)日:2018-04-24
申请号:CN201711086208.X
申请日:2017-11-07
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G06F17/50
CPC classification number: G06F17/5009 , G06F17/5095 , G06F2217/80
Abstract: 本发明提供了一种用于高超声速气动热预测的偏差大气参数确定方法,属于高超声速飞行器气动热环境预示技术领域。该方法包括如下步骤:(1)、根据飞行弹道点的飞行高度H,由标准大气方程组,得出该弹道点对应的标准大气密度ρ;(2)、根据飞行弹道点的飞行高度H,由大气密度偏差Δρ与高度的关系,得出对应的大气密度偏差量Δρ,由标准大气密度ρ和大气密度偏差量Δρ,得出该飞行高度H对应的偏差大气密度ρ';(3)、根据偏差大气密度ρ',由标准大气方程组,反查出与偏差大气密度ρ'对应的偏差大气高度H';(4)、根据偏差大气高度H',由标准大气方程组,分别计算得到偏差大气压力P'和偏差大气温度T'。本发明相对其它方法来确定偏差大气参数,具有方便快速的特点。
-
公开(公告)号:CN113486440B
公开(公告)日:2023-07-14
申请号:CN202110571914.3
申请日:2021-05-25
Applicant: 北京临近空间飞行器系统工程研究所
Abstract: 一种基于高频压力传感器测量高速边界层扰动波的布置方法,包括步骤如下:S1:采用数值模拟方法获取飞行器的层流流场;S2:辨识飞行器层流流场的边界层参数,获取边界层外缘速度分布;S3:根据边界层外缘速度分布,获取边界层外缘流线,沿外缘流线方向布置高频压力传感器。通过本发明的方法布置的传感器能够准确地测量出高速边界层内扰动波的发展演化,为流动稳定性分析与转捩预示方法的改进和完善提供数据支撑,提升转捩预示精度。
-
公开(公告)号:CN113532722A
公开(公告)日:2021-10-22
申请号:CN202110571918.1
申请日:2021-05-25
Applicant: 北京临近空间飞行器系统工程研究所
Abstract: 一种基于飞行试验脉动压力数据的双谱分析转捩辨识方法,包括步骤如下:S1:采用移动平均方法对飞行器上压力传感器测得的瞬时压力p进行滤波,得到平均压力获取飞行器的脉动压力在时间域上的分布曲线;S2:对脉动压力在时间域上的分布曲线进行划分,截取若干个Δt时间段内的脉动压力数据;Δt的取值范围根据采样频率选取;S3:对Δt时间段内的脉动压力数据进行双谱分析,得到每个Δt时间段内的脉动压力双谱值;S4:根据不同时间段内的脉动压力双谱值大小,辨识飞行器转捩发生时刻。本发明能够较为准确地辨识出飞行试验中飞行器边界层的转捩时刻,对后续飞行器的弹道优化、热防护设计提供数据支撑。
-
公开(公告)号:CN117054251A
公开(公告)日:2023-11-14
申请号:CN202310883798.8
申请日:2023-07-19
Applicant: 北京临近空间飞行器系统工程研究所
Abstract: 本发明提出一种柔性蒙皮结构的力热联合试验方法,属于材料性能试验技术领域,包括如下步骤:S100、对待测产品和试验装置进行固定;在待试验的柔性蒙皮结构上表面布设石英灯,下表面布设皮囊;在柔性蒙皮结构表面布设应变、温度传感器;S200、进行静力加载并保持;对皮囊充气,进行静力加载;S300、进行热负荷加载;保持皮囊内压强大小不变,打开石英灯进行加热;S400、测点数据收集和处理;加载过程中记录各测点的数据,得到试验曲线,根据曲线确定达到设计载荷时的应变大小和位移大小;S500、对试验数据进行后处理分析,验证产品是否满足强度和刚度要求,完成试验。本发明解决了现有技术中柔性蒙皮结构试验时气动载荷和加热条件模拟效果不理想的问题。
-
-
-
-
-
-
-
-
-