-
公开(公告)号:CN116588314A
公开(公告)日:2023-08-15
申请号:CN202310441811.4
申请日:2023-04-23
Applicant: 北京临近空间飞行器系统工程研究所
IPC: B64C1/00
Abstract: 一种适用于伸缩翼滑动过程的组合式热密封结构,该结构包括测伸缩翼、固定翼、柔性石英毛刷、柔性石英毡;固定翼为空腔结构,伸缩翼放置在固定翼空腔中,伸缩翼外表面设置凸台,伸缩翼外表面凸台上设置凹槽,柔性石英毡安装在凹槽内,柔性石英毛刷固定在伸缩翼外表面。本发明通过柔性石英毛刷的结构设计,实现了伸缩翼在伸缩动态过程中的热密封,通过柔性隔热毡的结构设计,实现了伸缩翼完全伸出、完全缩回状态下的静态热密封,解决了大幅度运动部件动态热密封的难题。
-
公开(公告)号:CN111780948B
公开(公告)日:2022-01-04
申请号:CN202010525480.9
申请日:2020-06-10
Applicant: 北京临近空间飞行器系统工程研究所
IPC: G01M9/06
Abstract: 本发明提供一种高超声速飞行试验中飞行器边界层转捩过程特性的测量方法,步骤如下:1)对飞行器周围流场进行仿真计算,获取飞行器表面流动特性;2)确定飞行器表面适合进行边界层转捩过程测量的区域;3)对飞行器的表面热流和结构热响应进行仿真计算,获取沿整个飞行剖面的飞行器表面热流和结构温度计算结果,对热流传感器和温度传感器进行选型;4)评估转捩测量区域内传感器安装的可行性;5)根据飞行器表面流动和转捩特性的分析结果,确定传感器位置、传感器测点个数和传感器测点间距;6)对步骤1)‑5)确定的转捩过程测量方案获取的飞行试验数据进行分析,并画出表面热流或温度沿流向变化的曲线;7)对热流或温度沿流向变化曲线的变化规律进行分析,确定边界层转捩过程特性。
-
公开(公告)号:CN111780948A
公开(公告)日:2020-10-16
申请号:CN202010525480.9
申请日:2020-06-10
Applicant: 北京临近空间飞行器系统工程研究所
IPC: G01M9/06
Abstract: 本发明提供一种高超声速飞行试验中飞行器边界层转捩过程特性的测量方法,步骤如下:1)对飞行器周围流场进行仿真计算,获取飞行器表面流动特性;2)确定飞行器表面适合进行边界层转捩过程测量的区域;3)对飞行器的表面热流和结构热响应进行仿真计算,获取沿整个飞行剖面的飞行器表面热流和结构温度计算结果,对热流传感器和温度传感器进行选型;4)评估转捩测量区域内传感器安装的可行性;5)根据飞行器表面流动和转捩特性的分析结果,确定传感器位置、传感器测点个数和传感器测点间距;6)对步骤1)-5)确定的转捩过程测量方案获取的飞行试验数据进行分析,并画出表面热流或温度沿流向变化的曲线;7)对热流或温度沿流向变化曲线的变化规律进行分析,确定边界层转捩过程特性。
-
公开(公告)号:CN111832159B
公开(公告)日:2023-08-29
申请号:CN202010581783.2
申请日:2020-06-23
Applicant: 北京临近空间飞行器系统工程研究所
IPC: G06F30/20 , G06F119/08 , G06F113/08
Abstract: 本发明一种基于飞行试验数据的边界层转捩阵面动态演化过程确定方法,(1)将高超声速飞行器表面测点上安装的传感器输出的原始测量结果,转化为飞行器表面测点位置处的热流或温度信息,过滤掉异常的测点信息,得到可用的飞行器表面测点处的热流或温度信息;(2)根据可用的飞行器表面测点处的热流或温度信息,得到各个测点发生转捩的时刻;(3)对任意一时刻,根据得到的各个测点发生转捩的时刻,判断该时刻各个测点是否发生转捩;(4)在转捩测量时间窗口内,选取多个时刻点,对每个时刻点,获得该时刻的转捩阵面图像。(5)将步骤(3)获得的各个时刻的转捩阵面图像,按飞行时序装订为动画,获得转捩阵面动态演化过程,从而得到各时刻飞行器表面的转捩区域。
-
公开(公告)号:CN111924089B
公开(公告)日:2021-09-07
申请号:CN202010600411.X
申请日:2020-06-28
Applicant: 北京临近空间飞行器系统工程研究所
Abstract: 一种防热、承力功能分离的舵轴防热结构,包括:刷式热密封圈和防热环;防热环固定安装在舱体表面,防热环的上表面设置有凸台,防热环中心开有通孔;舵轴穿过防热环中心的通孔分别连接舱体和舵;舵轴与防热环中心通孔不接触;防热环与舵轴之间的间隙采用刷式热密封圈进行热密封。舵朝向舱体表面一侧设置有与防热环的凸台结构的形状配合的凹槽结构;防热环的总高度大于舱体和舵之间的缝隙;舵与防热环之间不接触。本发明实现舵轴部位承力、防热功能分离,解决了舵轴部位承受严酷气动加热导致舵轴刚强度可靠性不确定的问题。
-
公开(公告)号:CN111924089A
公开(公告)日:2020-11-13
申请号:CN202010600411.X
申请日:2020-06-28
Applicant: 北京临近空间飞行器系统工程研究所
Abstract: 一种防热、承力功能分离的舵轴防热结构,包括:刷式热密封圈和防热环;防热环固定安装在舱体表面,防热环的上表面设置有凸台,防热环中心开有通孔;舵轴穿过防热环中心的通孔分别连接舱体和舵;舵轴与防热环中心通孔不接触;防热环与舵轴之间的间隙采用刷式热密封圈进行热密封。舵朝向舱体表面一侧设置有与防热环的凸台结构的形状配合的凹槽结构;防热环的总高度大于舱体和舵之间的缝隙;舵与防热环之间不接触。本发明实现舵轴部位承力、防热功能分离,解决了舵轴部位承受严酷气动加热导致舵轴刚强度可靠性不确定的问题。
-
公开(公告)号:CN114880772B
公开(公告)日:2025-03-21
申请号:CN202210472028.X
申请日:2022-04-29
Applicant: 北京临近空间飞行器系统工程研究所
IPC: G06F30/15 , G06F30/23 , G06F30/28 , G06T17/20 , G06F111/10 , G06F113/08
Abstract: 本发明涉及一种基于混合网格的复杂结构气动热环境分析方法及系统,包括开展CFD数值计算之前,对待计算模型及外场进行几何前处理;选择表面网格单元类型,设置表面网格单元参数,进行几何表面网格绘制;进行体网格绘制,形成混合网格;基于所述混合网格,进行气动热环境数值模拟;基于气动热环境数值模拟结果,进行网格优化;基于优化后的网格重新进行气动热环境数值模拟,判断模拟结果是否满足要求,若不满足则继续优化网格;若满足,则认为已经获得收敛的气动热环境结果。本发明用于提高热环境数值模拟的效率。
-
公开(公告)号:CN117408175A
公开(公告)日:2024-01-16
申请号:CN202310535406.9
申请日:2023-05-12
Applicant: 北京临近空间飞行器系统工程研究所
IPC: G06F30/28 , G01M9/06 , G01M9/02 , G06F113/08 , G06F119/08 , G06F119/14
Abstract: 一种等离子体流动控制热流测量试验设计方法,实施步骤如下:确定关键模拟参数;确定风洞流场参数以及风洞试验模型;通过求解NS方程得到试验模型的空间流场参数和试验模型表面压力、热流分布;确定等离子体激励器的安装位置;根据步骤2确定的风洞流场参数和步骤4确定的等离子体激励器的安装位置,得到安装位置周围分布的流场温度和压力;等离子体激励器选型;风洞试验模型工艺及测点位置设计;供电系统设计,假设流场建立为t1和风洞流场有效测量时间为t2,等离子体流动控制试验应确定在t1~t1+t2时间内,完成纹影和热流数据采集;等离子体激励器的工作触发时间确定为该时间t,要求t1
-
公开(公告)号:CN113184214A
公开(公告)日:2021-07-30
申请号:CN202110448755.8
申请日:2021-04-25
Applicant: 北京临近空间飞行器系统工程研究所
IPC: B64F5/00
Abstract: 本发明涉及降低翼舱体连接处气动加热尾翼局部外形优化方法及结构,所述尾翼的底部并非全部与舱体相连,尾翼前端连接处向后一定距离被切去后,底部呈台阶状,使尾翼前缘底部与飞行器舱体表面之间保持一定间隙,间隙下方为舱体壁面,上方为平整的翼底面,该底面垂直于翼的纵向对称面,平行于飞行器轴向。本发明在保证飞行器气动特性不变的前提下,实现了有效降低舱体‑尾翼前缘连接处热环境的目的。
-
公开(公告)号:CN113184214B
公开(公告)日:2022-09-27
申请号:CN202110448755.8
申请日:2021-04-25
Applicant: 北京临近空间飞行器系统工程研究所
IPC: B64F5/00
Abstract: 本发明涉及降低翼舱体连接处气动加热尾翼局部外形优化方法及结构,所述尾翼的底部并非全部与舱体相连,尾翼前端连接处向后一定距离被切去后,底部呈台阶状,使尾翼前缘底部与飞行器舱体表面之间保持一定间隙,间隙下方为舱体壁面,上方为平整的翼底面,该底面垂直于翼的纵向对称面,平行于飞行器轴向。本发明在保证飞行器气动特性不变的前提下,实现了有效降低舱体‑尾翼前缘连接处热环境的目的。
-
-
-
-
-
-
-
-
-