一种基于模糊自适应无迹卡尔曼滤波的车辆高可靠融合定位方法

    公开(公告)号:CN109946731A

    公开(公告)日:2019-06-28

    申请号:CN201910168995.5

    申请日:2019-03-06

    Applicant: 东南大学

    Abstract: 本发明公开了一种面向典型城市环境的车辆高可靠融合定位方法,针对城市环境下,车载卫星导航易使用受限,定位准确性及可靠性不高等问题,在传统的车载卫星与惯性组合导航的基础上,引入了超宽带(Ultra-Wideband,UWB)定位技术,并利用模糊算法对UWB观测精度分类,从而自适应调节UWB的观测噪声方差阵,在此基础之上,基于无迹卡尔曼滤波算法实现了车辆的融合定位。相比于传统的车载卫星与惯性组合导航,本发明中的方法,在城市环境,尤其是卫星信号受严重遮挡的复杂环境(如城市峡谷、交叉路口等)下,可靠性更高,有助于实现车辆的连续、完整、可靠、实时定位。

    城市低速环境下的大型营运车辆安全驾驶决策方法

    公开(公告)号:CN115257819B

    公开(公告)日:2024-12-24

    申请号:CN202211070514.5

    申请日:2022-09-02

    Applicant: 东南大学

    Abstract: 本发明公开了城市低速环境下的大型营运车辆安全驾驶决策方法,首先,采集城市交通环境下人类驾驶员的安全驾驶行为,构建形成安全驾驶行为数据集。其次,构建基于多头注意力的营运车辆安全驾驶决策模型。该模型包含深度双Q网络和生成对抗模仿学习两个子网络。其中,深度双Q网络通过无监督学习的方式,学习危险场景、冲突场景等边缘场景下的安全驾驶策略;生成对抗模仿学习子网络模仿人类驾驶员在不同驾驶条件和行驶工况下的安全驾驶行为。最后,训练安全驾驶决策模型,得到不同驾驶条件和行驶工况下的驾驶策略。本发明提出的方法,能够模拟人类驾驶员的安全驾驶行为,且考虑了视觉盲区、突遇障碍物等因素对行车安全的影响。

    一种基于图神经网络的多车辆驾驶行为预测方法

    公开(公告)号:CN116959260B

    公开(公告)日:2023-12-05

    申请号:CN202311212627.9

    申请日:2023-09-20

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于图神经网络的多车辆驾驶行为预测方法,属于新一代信息技术领域。首先,建立基于图神经网络的驾驶行为预测模型,并定义预测模型的输入和输出。其次,定义驾驶行为预测模型的相关参数。最后,设计驾驶行为预测模型的网络架构,并对其进行训练。本发明提出的方法站在路侧的全局化视角,能够预测多个交通参与者的驾驶行为,有助于提高道路重点区域的行车安全。此外,该方法无需计算车辆动力学模型,计算耗时低,且使用的传感器成(56)对比文件Yafu Tian 等.RSG-GCN: PredictingSemantic Relationships in Urban TrafficScene With Map Geometric Prior.IEEE OpenJournal of Intelligent TransportationSystems.2023,全文.赵海涛;程慧玲;丁仪;张晖;朱洪波.基于深度学习的车联边缘网络交通事故风险预测算法研究.电子与信息学报.2020,(第01期),全文.兰浩然 等.遮挡环境下基于路侧异源雷达融合的多交通目标鲁棒跟踪方法.仪器仪表学报.2022,全文.郑智勇.复杂交通环境下智能车辆高可靠车道级融合定位方法研究.万方学位论文.2023,全文.曹健 等.基于图神经网络的行人轨迹预测研究综述.计算机工程与科学.2023,全文.于秋爽.基于多模型输入的车辆轨迹预测研究.中国优秀硕士学位论文全文数据库 工程科技II辑.2022,全文.Chen T 等.Visual Reasoning usingGraph Convolutional Networks forPredicting Pedestrian CrossingIntention.2021 IEEE/CVF InternationalConference on Computer Vision Workshops(ICCVW).2022,全文.

    一种基于车体运动学信息的罐车侧倾状态预判方法

    公开(公告)号:CN111695196B

    公开(公告)日:2023-04-18

    申请号:CN202010444567.3

    申请日:2020-05-23

    Applicant: 东南大学

    Abstract: 本发明提出一种基于车体运动学信息的罐车侧倾状态预判方法,首先明确影响罐车侧倾状态的车体运动学信息,然后分别建立用于罐车车速和方向盘转角预测的AR模型,接着建立罐车典型侧翻场景集并开展车体运动学信息采集试验,进而设计用于罐车侧倾状态估计的神经网络,最后基于AR模型和神经网络实现罐车侧倾状态的提前预判。该方法使用的车体运动学信息通过CAN总线直接读取,无需外加传感器,操作方便成本低;通过神经网络建立车速、方向盘转角与侧倾状态的非线性映射关系,制作训练样本时考虑典型侧翻场景基元的影响,提高网络预估侧倾状态的准确性;利用AR模型对车速和方向盘转角进行短期预测,联合神经网络实现未来短期内罐车侧倾状态的精确预判。

    一种面向开放干扰场景的营运车辆前向防撞驾驶决策方法

    公开(公告)号:CN115257820A

    公开(公告)日:2022-11-01

    申请号:CN202211070542.7

    申请日:2022-09-02

    Applicant: 东南大学

    Abstract: 本发明公开了一种面向开放干扰场景的营运车辆前向防撞驾驶决策方法。首先,提取人类驾驶员的安全驾驶行为,构建形成用于前向防撞驾驶决策学习的“类人”驾驶行为数据库。其次,利用行为克隆算法从“类人”驾驶行为数据库中学习前向防撞驾驶策略。最后,利用生成对抗模仿学习算法继续学习驾驶策略,得到具有高度类人水平的前向防撞驾驶策略。本发明提出的方法,能够模拟人类驾驶员的安全驾驶行为,且考虑了视觉盲区、突遇障碍物、不同行驶工况等因素对前向防撞决策的影响,输出加速、减速、转向等高级决策策略,实现了开放干扰场景下的营运车辆前向防撞驾驶决策。

    一种面向平面交叉口的行人过街行为预测方法

    公开(公告)号:CN112487954A

    公开(公告)日:2021-03-12

    申请号:CN202011357565.7

    申请日:2020-11-26

    Applicant: 东南大学

    Abstract: 本发明涉及一种面向平面交叉口的行人过街行为预测方法,包括以下步骤:步骤一:设计即时奖励函数;步骤二:建立全卷积神经网络‑长短期记忆网络(FCN‑LSTM)模型预测动作奖励函数;步骤三:基于强化学习训练全卷积神经网络‑长短期记忆网络(FCN‑LSTM)模型;步骤四:预测行人过街行为及危险预警。该技术方案无需建立复杂的行人运动模型、无需准备海量的带标签数据集,实现自主学习平面交叉口处行人过街行为特征并预测其行走、驻足、快跑等行为,特别是对诱发人车碰撞、擦蹭等危险时行人过街行为的实时预测,对过街行人和来往车辆进行危险预警,有利于减少平面交叉口等重点路段交通事故发生率,保障交通环境中行人的安全。

    面向多场景的智能驾驶自主车道变换性能测试方法

    公开(公告)号:CN110987463A

    公开(公告)日:2020-04-10

    申请号:CN201911086483.0

    申请日:2019-11-08

    Applicant: 东南大学

    Abstract: 本发明公开了一种面向多场景的智能驾驶自主车道变换性能测试方法。本方法首先根据自主车道变换过程中的运动特点,建立了基于运动学自行车模型的车道变换动态模型。其次,利用改进的无迹卡尔曼滤波算法对车辆位置、速度、方位角等状态变量进行滤波估计。最后,基于准确递推的车辆关键性基础性能参数,构建变道性能评价指标体系,量化并输出自主车道变换性能的评价指标:目标间隙、距离碰撞时间和并线横摆稳定性,从而实现智能驾驶自主车道变换性能优劣的高精度、高频率测量和科学定量评价。

    一种面向道路合流区域的实时车道级安全态势评估方法

    公开(公告)号:CN110544380A

    公开(公告)日:2019-12-06

    申请号:CN201910874642.7

    申请日:2019-09-17

    Applicant: 东南大学

    Abstract: 本发明公开了一种面向道路合流区域的实时车道级安全态势评估方法。针对当前合流区域的交通安全态势评估技术,其实时性及精准度无法适用于基于车路协同的智能驾驶,提出基于概率模型的交通安全态势评估方法。首先,利用智能路侧设备的全局视角优势,全面感知合流区域内车辆的速度、车辆行驶至路径冲突区域中心的位移等信息,建立交通安全态势评估的指标;然后,建立交通安全态势评估的概率模型;最后,实时计算交通安全态势的后验概率,进而评估合流区域内各车道的交通安全态势。本发明的方法直接运行在智能路侧设备中,为合流区域提供实时的、精准至车道级的交通安全态势评估,掌握道路合流区域的交通安全状况。

    基于深浅特征融合卷积神经网络的路侧图像车辆分割方法

    公开(公告)号:CN110009648A

    公开(公告)日:2019-07-12

    申请号:CN201910161809.5

    申请日:2019-03-04

    Applicant: 东南大学

    Abstract: 本发明公开了基于深浅特征融合卷积神经网络的路侧图像车辆分割方法,该方法针对智能路侧终端图像中车辆相互粘连造成其边界难以准确获取的难题,首先通过对池化层、不同类型卷积层进行优化设计,得到一个高效的卷积神经网络来分层提取车辆特征,进而将网络浅层所提取的边缘细节特征与深层所提取的语义特征融合,得到深浅特征融合卷积神经网络。本发明方法在提高分割速度的同时,获得了完整、准确的车辆分割边界,有效克服了单一网络结构难以准确描述车辆边界的不足,满足智能路侧终端对准确性和实时性的要求。

Patent Agency Ranking