-
公开(公告)号:CN107311649B
公开(公告)日:2020-12-11
申请号:CN201710621235.6
申请日:2017-07-26
Applicant: 中南大学
IPC: C04B35/47 , C04B35/626
Abstract: 本发明公开了钛酸铋钠‑钛酸锶的复合压电铁电材料,呈多晶亚微米棒形貌。本发明还提供了所述的复合材料的制备方法,包括步骤(1):以钠源A和二氧化钛为反应物,按Na2Ti6O13的化学计量比称取并与熔盐混合;混合后的物料再在1000~1100℃下烧结;得钛酸钠单晶亚微米棒;步骤(2):以二氧化钛、钠源B、铋源、锶源和钛酸钠单晶亚微米棒为反应物,按化学式Na0.5Bi0.5TiO3‑xSrTiO3化学计量比称取并与熔盐混合;混合后的物料再在850~950℃下烧结,烧结产物经洗涤、干燥,即得。本发明独创性地钛酸钠单晶亚微米棒作为前驱体,再结合后续的二段熔盐法的各关键参数的控制,通过拓扑反应;可出人意料地制得具有棒状亚微米级别的钛酸铋钠‑钛酸锶的复合压电铁电材料。
-
公开(公告)号:CN107651963B
公开(公告)日:2020-11-20
申请号:CN201710807638.X
申请日:2017-09-08
Applicant: 中南大学
IPC: C04B35/571 , C04B35/589 , C04B35/14 , C04B35/632 , C04B35/622 , C04B38/00 , B28B1/00 , B33Y10/00 , B33Y80/00 , B33Y70/00
Abstract: 本发明属于三维立体结构的成型范围,具体涉及一种由先驱体打印并转化为陶瓷的直写成型方法。本发明以陶瓷先驱体为溶质,将其溶于液态有机物,通过原料搅拌得到具有一定粘弹性的墨水,置于针筒中。通过气压控制器,根据所设定的程序,在基板上逐层打印出三维结构,最后通过转换先驱体获得具有复杂三维结构的陶瓷。本发明克服了以往的直写成型陶瓷悬浮液在成型过程中容易发生堵嘴、连续性差、浆料不稳定的弊端。所设计的浆料组分简单、合理,流变性可控性强,便于大规模的工业化应用。同时本发明制备的三维周期结构的尺度范围广,通过针头孔径可简单实现分米级、厘米级、毫米级、微米级或纳米级的控制。
-
公开(公告)号:CN111676462A
公开(公告)日:2020-09-18
申请号:CN202010390590.9
申请日:2020-05-11
Applicant: 中南大学
Abstract: 本发明公开了一种高比表面积的图案化掺硼金刚石电极及其制备方法和应用,使用光刻方法在不锈钢薄片上刻出规则的图案;将具有通孔图案的不锈钢薄片覆盖在衬底表面,然后共同置于化学气相沉积炉中,采用基台限位固定;于衬底表面的暴露部份沉积生长图案化掺硼金刚石层即得图案化掺硼金刚石电极,化学气相沉积过程中,控制衬底的表面温度为750-950℃,生长气压为2.5-5KPa,通入的甲烷、硼烷、氢气的比例为(1-20):(0.3-1):(45-49);最后将制备的掺硼金刚石电极作为工作电极,铂片作为对电极,Ag/AgCl电极作为参比电极组装成检测电极系统;该发明的制备方法相比现有技术更简单,操作更容易控制,制作成本也更低。
-
公开(公告)号:CN109666915B
公开(公告)日:2020-08-18
申请号:CN201910094137.0
申请日:2019-01-30
Applicant: 中南大学
Abstract: 本发明提供了一种复合金属层镀覆碳纳米管/石墨烯复合材料的制备方法,包括以下步骤:将碳纳米管和石墨烯混合均匀,进行预处理后加入分散剂中,再制成碳纳米管/石墨烯薄膜;在惰性气氛下,以薄膜作为基体,通入反应源气体六氟化钨和六氟化钼,通入还原性气体,反应得到镀覆钨钼的碳纳米管/石墨烯层状材料;将层状材料加入镀铜液中,再加入还原剂,反应得到复合金属层镀覆碳纳米管/石墨烯复合材料前驱体;将前驱体进行烧结,得到复合金属层镀覆碳纳米管/石墨烯复合材料。该方法通过在碳纳米管/石墨烯薄膜表面镀覆钨、钼,使碳与铜之间的界面润湿性得到了极大改善,增强了界面结合强度,提高了复合材料的力学性能、电学性能和耐摩擦性能。
-
公开(公告)号:CN109440099B
公开(公告)日:2020-03-24
申请号:CN201811466995.5
申请日:2018-12-03
Applicant: 中南大学
Abstract: 本发明提供了一种复合金属层镀覆碳骨架电磁屏蔽复合材料的制备方法,包括以下步骤:将还原剂和石墨烯悬浮液混合均匀,得到含石墨烯的混合物,将含石墨烯的混合物进行超声雾化得到石墨烯雾滴;将镀镍液进行超声雾化,得到镀镍雾滴;将石墨烯雾滴以及镀镍雾滴通入碳骨架表面,在碳骨架表面相互接触进行反应,洗涤、干燥后得到表面均匀包覆金属镍/石墨烯的碳骨架材料;之后采用超声喷雾的方式将纳米铜粉喷覆在碳骨架材料表面;最后,进行烧结,得到复合金属层镀覆碳骨架电磁屏蔽复合材料。本发明的制备方法,有利于提高复合材料的电磁屏蔽性能,具有工艺流程简单、安全可靠、设备简单的特点,易于实现连续化生产。
-
公开(公告)号:CN110760724A
公开(公告)日:2020-02-07
申请号:CN201911135087.2
申请日:2019-11-19
Applicant: 中南大学
Abstract: 本发明公开了一种激光选区熔化制备的高Fe含量的Al-Mg2Si合金及制备方法,所述Al-Mg2Si合金由Al-Mg2Si合金原料粉末经激光选区熔化技术成型;所述Al-Mg2Si合金按质量百分比计,由以下成分组成:Mg 5~5.5%,Si 2~2.2%,Mn 0.4~0.6%,Fe 1~3%,余量为铝,总质量百分比为100%。本发明巧妙的利用激光选区熔化技术制备高Fe含量Al-Mg2Si合金,利用激光选区熔化技术中的冷却速率可达105~108k/s的特点,使得合金原料粉体熔融后在极快的冷却速度下,使合金非平衡凝固,合金元素分布均匀,各元素均无偏析,均匀形成(Al+Mg2Si)超细共晶组织,同时抑制了粗大富Fe金属间化合物的形成,形成了细小的富Fe金属间化合物均匀弥散,从而获得力学性能优异的高Fe含量Al-Mg2Si合金。
-
公开(公告)号:CN109898051B
公开(公告)日:2020-02-04
申请号:CN201910249636.2
申请日:2019-03-29
Applicant: 中南大学
Abstract: 一种抗磨损耐腐蚀的DLC/SiNx复合薄膜及其制备方法;所述复合薄膜在金属或合金基体表面制备非晶态金属或合金改性层后,采用磁控溅射技术依次制备SiNx薄膜、DLC薄膜。其制备方法是将金属或合金基体置于磁控溅射设备中,采用等离子轰击金属或合金基体表面,对金属或合金基体表面进行离子刻蚀或者离子刻蚀的同时进行离子注入,得到表面改性层后,采用磁控溅射在表面改性层上原位制备SiNx薄膜和DLC薄膜。本发明制备的类金刚石薄膜具有低成本效率高的优势。可以对基底进行离子清洗,也能提升含碳气氛的离化率,同时可以施加基底偏压,有效提升复合膜的综合性能,特别是射频基底偏压不会随薄膜厚度的增加而大幅降低偏压效果,适合大规模应用。
-
公开(公告)号:CN109825821B
公开(公告)日:2020-02-04
申请号:CN201910209114.X
申请日:2019-03-19
Applicant: 中南大学
IPC: C23C16/517 , C23C16/02 , C23C16/27 , C23C16/34
Abstract: 一种金刚石/CBN复合涂层硬质合金刀具、制备方法及装置,所述刀具表面设有金刚石/CBN涂层复合涂层,所述金刚石/CBN复合涂层由基层与表层构成,所述基层由纳米晶金刚石、微米晶金刚石交替设置构成,表层为立方氮化硼涂层。其制备方法包括除油脱脂、化学微刻蚀、等离子活化及等离子增强气态硼化、等离子清洗、金刚石泥浆超声研磨、种植纳米、微米金刚石籽晶、沉积金刚石/CBN复合涂层;所述设备包括炉体、炉膛、电加热体、等离子发生电源、样品台、加热灯丝。本发明制备的金刚石/CBN复合涂层硬质合金刀具膜层结构合理、膜基结合力好、切削性能优异,适于工业化大规模生产。
-
公开(公告)号:CN109291428B
公开(公告)日:2020-01-14
申请号:CN201811147574.6
申请日:2018-09-29
Applicant: 中南大学
IPC: B29C64/106 , B29C64/314 , C08L27/16 , C08K9/00 , C08K9/02 , C08K9/06 , C08K9/10 , C08K7/08 , C08J5/18 , B33Y10/00 , B33Y70/00
Abstract: 本发明属于介电复合材料领域,具体涉及一种调控复合材料中陶瓷纳米线排列方向的方法。采用的技术方案为:一种调控复合材料中陶瓷纳米线排列方向的方法,包括如下步骤:制备陶瓷纳米线/聚合物浆料,所述浆料在0.1~100 1/s剪切速率范围内呈剪切致稀现象;去除所述浆料中的气泡;将所述浆料从出料口口径为10~200μm的浆料挤出装置中挤出,获得特征线性流体,控制出料口运动轨迹即可。本发明采用3D打印技术使浆料中的陶瓷纳米线定向排列,并调控了纳米线的分布方向,进而调控复合材料的性能。
-
公开(公告)号:CN110518115A
公开(公告)日:2019-11-29
申请号:CN201910858173.X
申请日:2019-09-11
Applicant: 中南大学
IPC: H01L41/18 , H01L41/187 , H01L41/37 , H01L41/39
Abstract: 一种剪切型压电复合材料的制备方法及其驱动器的制备,包括以下步骤:将压电陶瓷块沿厚度方向极化;将极化后的压电陶瓷块沿其厚度方向作第一次切割成薄片;沿所述的薄片的厚度方向,垂直于极化方向作第二次切割,或是沿所述的薄片的厚度方向,平行于极化方向作第二次切割;第二次切割过程中薄片时并没有切透,其中一部分保留作为基体,形成带间隙压电陶瓷薄片;将聚合物填充到所述的压电陶瓷薄片的间隙中,经固化,减薄。将电极复合至(4)步所得到的压电陶瓷薄片上、下表面。将(4)步所得的材料沿厚度方向施加电场。制备简单,易于操作,性能好,且可以实现两种构型的d15型压电纤维复合材料的制备。
-
-
-
-
-
-
-
-
-