一种高抗压强度低弹性模量锆钽钛牙科种植体材料及其制备方法

    公开(公告)号:CN115920123B

    公开(公告)日:2024-04-02

    申请号:CN202211621102.6

    申请日:2022-12-16

    申请人: 中南大学

    摘要: 本发明涉及一种高抗压强度、低弹性模量且表面附有一层多孔钽骨架的锆钽钛牙科种植体材料及其制备方法。所述高强度低弹性模量的锆钽钛牙科种植体材料中锆、钽和钛的质量比为(7~18):(1~5):1;所述锆钽钛牙科种植体材料中有层片状组织,且所述锆钽钛牙科种植体材料表面生成有网状钽;所述锆钽钛牙科种植体材料的抗压强度为1000~1435MPa,弹性模量为50~80GPa,相对密度为89%~98%。其制备方法包括压坯‑烧结,烧结时控制温度小于等于1200~1500℃。本发明所得产品强度高、弹性模量较低与人体上下颌骨力学相容性好,与口腔上皮与纤维组织生物相容性好。本发明组分设计合理、制备工艺简单可控,所得产品性能优良,便于大规模应用。

    一种固溶强化型Al-Mg2Si-Mg系合金材料及其制备方法和应用

    公开(公告)号:CN117418126A

    公开(公告)日:2024-01-19

    申请号:CN202311238976.8

    申请日:2023-09-25

    申请人: 中南大学

    IPC分类号: C22C1/04 C22C21/08

    摘要: 本发明公开了一种固溶强化型Al‑Mg2Si‑Mg系合金材料及其制备方法和应用。该合金材料采用不同粒径的Al‑Mg2Si粉末和Al‑Mg粉末共混,通过增材制造工艺制备,实现了高强韧合金的快速成型。该合金材料充分利用增材制造快速冷却速度特点促使大量Mg固溶于基体起到固溶强化,此外Mg和Mg2Si能够提高合金生长限制因子,大幅细化合金材料的晶粒大小形成抗裂纹体系,无需额外引入强化元素,同时保证合金材料力学性能。本发明所提供的合金材料充分利用增材制造快速凝固的优势,同时解决了铝合金成形性差、强度不高的问题,可满足航空航天零部件的力学要求。

    一种激光选区熔化用铝合金粉及其制备共晶强化铝合金的方法

    公开(公告)号:CN110184512A

    公开(公告)日:2019-08-30

    申请号:CN201910635651.0

    申请日:2019-07-15

    申请人: 中南大学

    摘要: 本发明公开了一种激光选区熔化用铝合金粉及其制备共晶强化铝合金的方法,按质量百分比计,包括以下成分:Mg 2.6~5.5%,Si 1.1~2.2%,Mn 0.2~0.6%,余量为铝,总质量百分比为100%。本发明针对激光选区熔化技术熔体冷速极高的工艺特性,在A1-Mg-Si系铝合金中,同时提高Mg和Si元素的含量并添加微量Mn,形成一种新的合金体系使其有独特的组织结构,提升铝合金中第二相强化Mg2Si的浓度且Mg2Si强化相分布均匀,形成层片状的(Al+Mg2Si)超细共晶组织,双相层状组织使得合金在没有热处理工艺的条件下,实现较高的综合性能。本发明的激光选区熔化技术专用A1-Mg-Si-Mn铝合金粉的成分中,Mn的加入可以析出弥散相,弥散相通过钉扎晶界促进细化晶粒,而且可作为强化相的形核核心,并有效增加铝合金的流动性。

    一种增材制造用高强韧Al-Mg2Si-Zn合金及其制备方法和应用

    公开(公告)号:CN114592148B

    公开(公告)日:2022-10-11

    申请号:CN202210241222.7

    申请日:2022-03-11

    申请人: 中南大学

    摘要: 本发明属于新材料制备技术领域,具体涉及一种增材制造用高强韧Al‑Mg2Si‑Zn合金及其制备方法和应用。所述Al‑Mg2Si合金按质量百分比计,由以下成分组成:Mg 3.5~9.5%,Si 1.3~3.5%,Mn 0.4~0.9%,Fe 0.05~2.5%,Zn 2~5.5%,余量为铝及不可去除的杂质元素。所述Al‑Mg2Si‑Zn合金由合金制造、粉末制造、选区激光熔化成型等工艺制造需要的零部件。本发明制造的合金零部件可以直接使用,也可经过短时低温时效热处理进行强化使用。采用本发明制造的零部件具有工艺简单、致密度高、力学性能优异等特点,适合工业化生产。

    一种增材制造用高强韧Al-Mg2Si-Zn合金及其制备方法和应用

    公开(公告)号:CN114592148A

    公开(公告)日:2022-06-07

    申请号:CN202210241222.7

    申请日:2022-03-11

    申请人: 中南大学

    摘要: 本发明属于新材料制备技术领域,具体涉及一种增材制造用高强韧Al‑Mg2Si‑Zn合金及其制备方法和应用。所述Al‑Mg2Si合金按质量百分比计,由以下成分组成:Mg 3.5~9.5%,Si 1.3~3.5%,Mn 0.4~0.9%,Fe 0.05~2.5%,Zn 2~5.5%,余量为铝及不可去除的杂质元素。所述Al‑Mg2Si‑Zn合金由合金制造、粉末制造、选区激光熔化成型等工艺制造需要的零部件。本发明制造的合金零部件可以直接使用,也可经过短时低温时效热处理进行强化使用。采用本发明制造的零部件具有工艺简单、致密度高、力学性能优异等特点,适合工业化生产。

    一种提高激光焊接性能的铝硅合金制备工艺

    公开(公告)号:CN113458732A

    公开(公告)日:2021-10-01

    申请号:CN202110781844.4

    申请日:2021-07-12

    申请人: 中南大学

    IPC分类号: B23P15/00

    摘要: 本发明公开了一种提高激光焊接性能的铝硅合金制备工艺方法,包括以下步骤:以4047铝合金粉末为原材料,使用选区激光熔化技术制备出固化后的材料;对所得固化后的材料进行热轧制并打磨,得到待焊接材料;对所得待焊接材料进行激光焊接,得到成品。该工艺方法依靠增材制造技术在合适的参数下可以获得细小晶粒,再使用轧制减少或消除增材制造中产生的孔隙等缺陷,并进一步获得均匀的细晶粒和共晶组织,从而达到提高焊接性能的目的,显著提高焊接接头的力学性能。

    一种Mo纳米颗粒增强CoCrNi中熵合金复合材料及其制备方法

    公开(公告)号:CN109097657B

    公开(公告)日:2020-06-16

    申请号:CN201811236549.5

    申请日:2018-10-23

    申请人: 中南大学

    发明人: 杨海林 汪建英

    IPC分类号: C22C30/00 C22C1/04 B22F9/22

    摘要: 本发明提供一种Mo纳米颗粒增强CoCrNi中熵合金复合材料及其制备方法,属于复合材料制备技术领域,该复合材料的复合粉末由基体CoCrNi中熵合金粉和包覆层Mo纳米颗粒组成,所述复合粉末由以下组分按重量百分比组成:CoCrNi中熵合金95~99wt%;Mo纳米颗粒1~5wt%。本发明Mo纳米颗粒增强CoCrNi中熵合金复合材料,致密度较高,力学性能优异,材料的抗拉强度和硬度得到显著提升,具有良好的细晶强化作用,保持了良好的韧性,充分发挥了纳米颗粒增强复合材料的性能优点。本发明制备方法的工艺简单,利用包覆法制备的复合粉末中,Mo纳米颗粒分布较为均匀,与传统的球磨和机械合金化相比,包覆后煅烧及还原的粉末没有氧化和污染,具有很大的优势。

    一种准晶强化韧性高强铝合金材料及其制备方法

    公开(公告)号:CN117778830A

    公开(公告)日:2024-03-29

    申请号:CN202311719982.5

    申请日:2023-12-14

    申请人: 中南大学

    摘要: 本发明公开了一种准晶强化韧性高强铝合金材料及其制备方法。该合金由包括Al‑Mg‑Si合金和H13在内的原料经增材制造制得;所述Al‑Mg‑Si合金包括以下质量百分比组分:Mg 2~6%,Si 1~2.5%,Mn 0.2~0.6%,余量为铝;所述Al‑Mg‑Si合金与H13的质量比为80~120:3。该合金材料采用不同粒径的Al‑Mg‑Si粉末H13粉末,通过增材制造LPBF技术实现合金材料的一体化成型,其根据Al‑Mg‑Si与H13的质量比,相应的调整LPBF的工艺参数,从而提高材料的成型性,进而起到强化合金材料综合性能的效果,经测试,采用本发明方法所得到的铝合金材料最大相对密度为99.8%,最大抗拉强度为523.5MPa,屈服强度为450.3MPa,延伸率为9.4%。

    一种共晶强化Al-Mg-Si-Ni系合金材料及其制备方法和应用

    公开(公告)号:CN117418127A

    公开(公告)日:2024-01-19

    申请号:CN202311240881.X

    申请日:2023-09-25

    申请人: 中南大学

    摘要: 本发明公开了一种共晶强化Al‑Mg‑Si‑Ni系合金材料及其制备方法和应用。该合金成分包括有:4.5~5.5wt%的Mg,1.8~2.8wt%的Si,0.5~2.5wt%的Ni,以及余量的Al和不可避免的杂质。该合金材料以气雾化法制备、粒径范围为15~53μm的Al‑Mg‑Si‑Ni粉末为原料,由LPBF技术制备,实现高强韧合金的快速成形。该合金基于共晶Al‑Mg2Si与Al3Ni协同强化,以共晶相提高液体填充能力大幅度降低合金材料的开裂倾向,同时可以进一步通过工艺参数和成分优化调控合金中共晶胞状组织的含量,实现成形性和力学性能优化。本发明所提供的合金材料具有良好的成形性、高致密度以及优异的力学性能,可应用于航空发动机的涡轮叶片。