-
公开(公告)号:CN110412419B
公开(公告)日:2021-07-27
申请号:CN201910694548.3
申请日:2019-07-30
Applicant: 中北大学
Abstract: 本发明公开了一种基于德尔菲法的多传感融合输电线路无损检测方法,利用磁传感器获得初始电压的同时,也利用湿度传感器获得初始空气湿度,从而自适应的确定了检测环境的阈值,当超出正常阈值后,初步确认为线缆的外表面破损(有断裂或者毛刺),再根据磁传感器监测的磁场强度,光传感器得到的光强,声传感器得到的频率和响度,剔除空气湿度和固有电压感应电晕的干扰,通过信号调理模块,先送入处理器归一化处理,再利用德尔菲法加权处理,确认并记录破损点。执行多传感融合输电线路无损检测方法的是挂载于飞行器或巡检机器人的复合无损探测装置,最后把记录数据通过数据处理与传输单元传到智能电网控制端,更精准地服务于智能电网领域。
-
公开(公告)号:CN110412420B
公开(公告)日:2021-04-16
申请号:CN201910694549.8
申请日:2019-07-30
Applicant: 中北大学
Abstract: 本发明公开一种基于电晕效应的输电线路磁光声复合无损探测装置。该装置包括机械结构部分和数据处理部分;所述机械结构部分包括:屏蔽壳体和安装座,在屏蔽壳体的两个侧面安装屏蔽体,屏蔽壳体顶部设有上盖,上盖下方两侧分别设有安装座,两个安装座分别位于屏蔽体的上方;所述数据处理部分包括一对光传感模组、一对磁传感模组、一个声传感模组、一个湿度传感模组、一个微处理器、一套信号调理与传输单元和一个内部电源管理模组。本发明装置可以广泛装备于智能电网领域,能够充分利用带电高压输电线路本身具有的电晕效应以及电晕效应所发出的磁光声现象,能通过较为科学合理的方法,去除原有叠加干扰,准确定位其破损位置,更好地为智能电网服务。
-
公开(公告)号:CN112648895A
公开(公告)日:2021-04-13
申请号:CN202011503248.1
申请日:2020-12-17
Applicant: 中北大学
Abstract: 本发明属于智能引信技术领域,提供一种基于弹体力磁效应的侵彻计层方法,在侵彻弹体的内部安装起爆控制系统,其包括磁传感器、电源模块、适配电路模块和处理识别电路模块,铁磁材料的侵彻弹体穿过每层硬目标靶板时,受到冲击阻力作用,产生力磁效应,引起侵彻弹体表面漏磁场的磁场强度变化,将磁信号作为穿层信号,通过磁传感器对产生的磁信号进行检测,对该实测的正弦脉冲式模拟电压信号进行预处理之后通过模数转化后送至处理识别电路模块,经数字滤波处理后得到正弦脉冲式电压信号,通过识别脉冲电压信号的个数实现计层。本发明能为武器侵彻地下目标时提供准确有效的计层起爆控制信号,提高武器装备的智能化和毁伤效能。
-
公开(公告)号:CN112642994A
公开(公告)日:2021-04-13
申请号:CN202011382140.1
申请日:2020-12-01
Applicant: 中北大学
Abstract: 本发明为一种环境友好型冷冻‑溶解铸造工艺,属于铸造技术领域。该工艺步骤为:用型砂和水制造模具,将模具冷冻得到冷冻模具,熔融金属液注入冷冻模具中,熔融金属在模具中凝固成壳,对模具壁厚部位喷洒冷却水,使冷冻模具局部快速溶解溃散,冷却水直接与铸件变壁厚部位接触冷却,熔融金属全部固化形成目标铸件回收型砂、冷却剂等一些原材料。本发明工艺可加快铸件的冷却速度,平衡铸件变壁厚部位的冷却速率,极大的提升变壁厚复杂铸件的机械性能;同时,随着最终冷冻模具的溶解溃散落砂,省去单独对铸件的落砂清理环节,且铸造废弃物少,是一种新型的环保铸造技术,具有很大的发展前景。
-
公开(公告)号:CN112522546A
公开(公告)日:2021-03-19
申请号:CN202011153733.0
申请日:2020-10-26
Applicant: 中北大学
IPC: C22C21/00 , C22C32/00 , C22C1/05 , C22C1/10 , B22F3/105 , B22F10/28 , B33Y10/00 , B33Y80/00 , B33Y70/10
Abstract: 本发明涉及一种利用SLM技术制备B4C增强铝基复合材料的方法,首先使用有机溶剂对C粉和B粉进行预处理;然后将预处理后的两种粉末加入球磨机球磨,得到混合粉末;最后以混合粉末和Al粉为原料,进行SLM成形。SLM设备装粉时,供粉缸底层和顶层均为Al粉,中间层为混合粉末。当成型缸中激光扫描混合粉末层时,C粉和B粉原位反应生成B4C,从而制得了Al‑B4C‑Al的三明治结构铝基复合材料。本发明的制备方法解决了铝基体与B4C表面润湿性差,界面结合能弱的问题,在提高碳化硼含量的基础上,得到了致密度高、使用性能稳定的铝基复合材料,使其可以达到中子吸收/屏蔽的目的,防止核辐射。
-
公开(公告)号:CN111974996A
公开(公告)日:2020-11-24
申请号:CN202010623629.7
申请日:2020-07-01
Applicant: 中北大学
Abstract: 本发明涉及3D打印技术领域,尤其涉及一种可调节铺粉面积的选择性激光熔化成型仓,包括成型仓侧壁移动轴、导风板、保护气管道、成型仓侧壁、打印平台、沉降式基板、刮刀导轨、多功能可伸缩式刮刀、粉料进料口、高效除尘挡板和成型仓侧壁横梁,打印平台左右两侧安装成型仓侧壁,成型仓侧壁之间安装沉降式基板,两侧壁后侧之间安装多功能可伸缩式刮刀,两侧壁底部内侧分别安装刮刀导轨,多功能可伸缩刮刀上方设粉料进料口,成型仓侧壁中部安装保护气管道,在通气孔处分别安装高效除尘挡板,高效除尘挡板分别与导风板连接。本发明结构简单,设计新颖合理,使用方便,可以控制铺粉面积,操作方便;并且减少烟尘掉落引起的粉尘浪费,节约成本。
-
公开(公告)号:CN111957961A
公开(公告)日:2020-11-20
申请号:CN202010811466.5
申请日:2020-08-13
Applicant: 中北大学
Abstract: 本发明涉及一种3D打印循环供粉装置,包括储粉缸、供粉缸、中转粉仓、集粉仓以及循环粉仓。储粉缸中设有供粉机构,负责将储粉缸中粉末输送到供粉缸中。供粉缸底部装有超声波振动器,并通过中转通道与中转粉仓连接。中转通道靠近供粉缸一端设有阀门,中间装有吸尘器,一起控制粉末通过中转通道进入中转粉仓。中转粉仓中的粉末在电磁阀的控制下,由液压机推动活塞通过滤网通道,完成粉末的过滤清洁,进入集粉仓中。集粉仓内设废料循环供给机构,将集粉仓中多余粉末由下而上输送到循环粉仓,最后通过加料口进入储粉缸,完成连续供粉。提高了供粉效率,方便回收剩余粉末,节约资源。
-
公开(公告)号:CN111618298A
公开(公告)日:2020-09-04
申请号:CN202010360783.X
申请日:2020-04-30
Applicant: 中北大学
IPC: B22F3/105 , B22F7/08 , B33Y10/00 , B23K26/346 , B23K26/348
Abstract: 本发明为一种多材料、变刚度结构高效协同增材制造方法,属于复合增材制造技术领域。本发明方法首先是将零件结构划分为具有复杂孔隙结构的轻量化部分和需要快速加工制造的实体部分,然后利用选区激光熔化技术制备出轻量化部分,接着对轻量化部分进行表面处理,最后在轻量化部分上利用电弧增材制造技术制备出实体部分即可。本发明方法可以较快的制备处具有复杂形状的零件,减少了零件的加工周期,降低了生产成本。本发明方法充分发挥了选区激光熔化成型技术和电弧增材制造技术的优势,提高了大型零件和多材料零件的增材制造水平,为增材制造的发展开辟新的方向和领域。
-
公开(公告)号:CN110666155A
公开(公告)日:2020-01-10
申请号:CN201910988802.0
申请日:2019-10-17
Applicant: 中北大学
Abstract: 本发明涉及一种利用废旧316L不锈钢粉制备3D打印用金属基复合粉的方法,属于金属基陶瓷复合材料领域。该制备方法具体为:制备复合粉前对废旧316L不锈钢粉进行去污清洗,酸洗处理,钝化处理和磁化处理,对TiC、Si3N4、WC三种陶瓷粉进行去污清洗处理,使用湿法球磨将按照一定比例配制好的复合粉均匀混合。依照本发明制备的316L不锈钢复合粉在3D打印过程中,陶瓷强化相与基体结合强度高,打印出的零件硬度高、耐磨性好,各项性能都得到了很大的提升。
-
公开(公告)号:CN107745549B
公开(公告)日:2019-08-13
申请号:CN201710828680.X
申请日:2017-09-14
Applicant: 中北大学
Abstract: 本发明公开了一种增材制造内置电路金属复合板的方法,属于增材制造领域;所要解决的技术问题是提供了一种可以将电路直接写入金属复合板,将电路与金属复合板同时制备,制成一体的增材制造内置电路金属复合板的方法;解决该技术问题采用的技术方案为:一种增材制造内置电路金属复合板的方法,通过在金属箔材中提前切割出设定好的电路路径,将金属箔材通过超声波固结成形,然后在电路路径中依次填充绝缘材料、导电材料、绝缘材料,将电路与金属复合板制备为一体;本发明可广泛应用于增材制造领域。
-
-
-
-
-
-
-
-
-