-
公开(公告)号:CN119724671A
公开(公告)日:2025-03-28
申请号:CN202411804202.1
申请日:2024-12-10
Applicant: 哈尔滨工程大学
Abstract: 本发明属于近场光镊技术领域,具体涉及一种基于WGM的单光纤近场光镊,包括二氧化硅中空微球、激光光源和光纤单元,二氧化硅中空微球包括球壳区域和位于球壳区域内部的中空区域,且球壳区域的折射率比中空区域折射率高;激光光源用于放射激光,激光光源以入射角为90°的方式将激光折射进入球壳区域,在二氧化硅中空微球外表面产生倏逝场,激光光源放射的激光波长为980nm激光和532nm。本发明能够将近场光镊和WGM结构结合,通过在球微腔内表面进行全反射而在外表面形成倏逝场,实现捕获纳米量级微粒的功能,并通过改变入射激光的波长来达到纳米微粒在不同位置被捕获的目的。
-
公开(公告)号:CN119517107A
公开(公告)日:2025-02-25
申请号:CN202411550007.0
申请日:2024-11-01
Applicant: 哈尔滨工程大学
Abstract: 本发明属于用于光存储的光纤器件技术领域,具体涉及一种基于相变材料的内容可寻址存储器,包括单波长连续光探测激光模块、宽谱光探测激光模块、脉冲光泵浦光源模块、电脉冲发生装置、2×2光纤耦合器输入阵列、多芯光纤扇入模块、内容可寻址存储单元组、多芯光纤扇出模块、2×2光纤耦合器输出阵列、滤波器组、光电探测器组、多通道探测光谱仪、1×n耦合器、光电探测器、数据采集模块;所述单波长连续光探测激光模块和宽谱光探测激光模块输出端与2×2光纤耦合器输入阵列输入端连接。本发明能够通过搭建Mach‑Zehnder(MZ)干涉仪的方式实现异或比较操作,为高速、高密度应用提供新范式。
-
公开(公告)号:CN119198638A
公开(公告)日:2024-12-27
申请号:CN202411372048.5
申请日:2024-09-29
Abstract: 本发明属于光纤传感技术领域,具体涉及一种基于聚二甲基硅氧烷填充空芯光纤的表面等离子体共振传感器及其制备方法,该表面等离子体共振传感器,包括空芯光纤,空芯光纤的两端分别固定有单模光纤和多模光纤,空芯光纤的内部从内至外依次设有聚二甲基硅氧烷、金膜和高折射率薄膜,一种表面等离子体共振传感器的制备方法,制备方法包括去除空芯光纤外侧的光纤保护层,两端分别与单模光纤和多模光纤焊接,对空芯光纤进行侧抛处理,将混合后的聚二甲基硅氧烷注入侧抛后的空芯光纤的空芯槽内,在聚二甲基硅氧烷表面镀上一层金膜和高折射率薄膜。本发明相比于传统的表面等离子体共振,有效提高了低折射率检测准确性和灵敏度。
-
公开(公告)号:CN118472757A
公开(公告)日:2024-08-09
申请号:CN202410606170.8
申请日:2024-05-16
Applicant: 哈尔滨工程大学
Abstract: 本发明属于激光技术领域,具体涉及一种重频可重构的全光纤非锁模超连续光源,包括模拟信号发生器、任意波形发生器、电脉冲发生器、宽带射频放大器、窄带射频放大模块、波长可调的连续激光器、电光相位调制器、连续光放大器、马赫曾德尔强度调制器、脉冲光放大器、单模光纤和高阶非线性光纤;所述模拟信号发生器第二输出端与任意波形发生器的输入端连接,所述任意波形发生器的输出端与电脉冲发生器的输入端连接,所述电脉冲发生器的输出端与宽带射频放大器的输入端连接。本发明能够利用具有全光纤结构的超连续光谱激光器产生超连续谱,扩大了光纤光的增益范围,增强了非线性效应,提升了在光电对抗等领域的应用优势。
-
公开(公告)号:CN115519785B
公开(公告)日:2023-11-14
申请号:CN202211212480.9
申请日:2022-09-29
Applicant: 哈尔滨工程大学
IPC: B29C64/20 , B29C64/245 , B29C64/264 , B29C64/393 , B29C64/268 , B33Y30/00 , B33Y50/02
Abstract: 本发明公开了一种基于光纤的微纳结构3D打印系统及其打印方法,包括:光纤微透镜、光纤、运动平台、光纤耦合器、光纤环形器、可见光源、光电探测器、飞秒激光光源、模式选择模块、光隔离器、支撑结构、光敏聚合物容器池和控制器。本发明利用光纤微透镜替代传统空间物镜实现激光聚焦与结构微型化;光纤输出光场受模式可控,实现高精度与高效率打印;使用光纤进行3D打印加工更加灵活,实现多维度加工,高自由度微纳尺度打印。该系统和方法实现了高精度、跨尺度三维微纳结构的高效加工。
-
公开(公告)号:CN115569675B
公开(公告)日:2023-10-17
申请号:CN202211162402.2
申请日:2022-09-23
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种微液滴的产生方法,包括以下步骤:根据制备的微液滴的数量、大小以及到液面距离调整激光器的输出功率‑将激光器与光纤的一端进行连接,并将与光纤另一端连接的光纤探头插入样品液体内部,激光器发出的光通过光纤探头传输到样品液体,发生光热效应‑向样品液体顶部表面两侧分别吹冷空气流和热蒸气流‑直至形成光源加热区‑样品液体温度逐渐升高,样品液体发生液气相变形成蒸气,蒸气遇到低于饱和温度时发生冷凝,形成微液滴。本发明采用上述微液滴的产生方法,实现了在样品液面之上生成悬浮、可调控大小、数量及位置的微液滴,且具有结构简单、对环境要求小、易于实施、抗干扰能力强、制备方便等优点。
-
公开(公告)号:CN113654582B
公开(公告)日:2023-06-02
申请号:CN202111020403.9
申请日:2021-09-01
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种利用少模FBG‑FP同时测量应变和温度的方案。包括窄线宽光源模块、少模FBG‑FP模块、PDH解调模块以及反馈控制模块。由两个与少模FBG‑FP模式相对应波长的窄线宽光纤光源经过光纤耦合器耦合束后向后传递,由直波导调制器进行相位调制,经过光纤环形器后入射至少模FBG‑FP之后,反射回来的两个模式谐振峰再次经过光纤环形器后由光子灯笼将其分离,入射至光电探测器转换为电信号,进入锁相放大模块后得到两个模式的PDH误差信号,由FPGA分别对各PDH信号进行处理。这种方案以单根光纤完成对多参量的同时测量,首次对少模精细光栅结构的传感特性进行探索。
-
公开(公告)号:CN113687462B
公开(公告)日:2023-05-16
申请号:CN202111029190.6
申请日:2021-09-01
Applicant: 哈尔滨工程大学
IPC: G02B6/02
Abstract: 本发明提供一种光纤光栅制作方法,属于光纤光栅制作领域。在非绝热拉锥型微纳光纤周围设置光敏聚合材料环境,由于激光传播模式在非绝热拉锥型微纳光纤中耦合变化,光纤外部有周期性明暗相间的倏逝场泄露,在周围是相近折射率的光敏聚合材料环境时更加明显,有高功率光场泄露位置处的光敏聚合材料由于受到敏感光照自生长成有一定折射率的固态光敏聚合材料,产生周期性折射率分布,进而获得光纤光栅。本发明制作的光纤光栅可用于折射率传感、温度传感、应力传感等,该制作方法具有自生长、可控性强、制作周期短、操作流程简单、重复性高的优点。
-
公开(公告)号:CN115825005A
公开(公告)日:2023-03-21
申请号:CN202211173215.4
申请日:2022-09-26
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于微流控芯片快速测算液体折射率的方法,属于光纤传感技术领域。双芯光纤与毛细管光纤通过光纤粘合剂垂直组合在一起,激光通过双芯光纤的一个纤芯后,光场在双芯光纤的末端经过光纤粘合剂后直接耦合到毛细管光纤内,在其毛细管壁内发生全反射形成倏逝波,最终回到双芯光纤对称的另一纤芯内,由于倏逝波对外界折射率变化敏感,从而达到精确测算样本液体的折射率的目的。本发明一种基于微流控芯片快速测算液体折射率的方法具有样本液体需求量小、损耗低、构造简单、器件体积小、灵敏度高、易于集成和低成本制造的优点。
-
公开(公告)号:CN115715993A
公开(公告)日:2023-02-28
申请号:CN202211213370.4
申请日:2022-09-29
Applicant: 哈尔滨工程大学
IPC: B01L3/00
Abstract: 本发明公开了一种基于光致热效应的微液滴操控方法,包括以下步骤:S1、将待测液体滴在载玻片上并放置在微操作平台上;S2、将连接有激光器的光纤探头利用微操作平台水平放置在待测液体内;S3、光纤探头在待测液体中形成光纤光场,并形成加热区域;S4、加热区域吸收能量出现大量蒸汽,热蒸汽流上升遇冷空气凝成微液滴,在伯努利效应的作用下微液滴被悬浮捕获;S5、移动光纤探头,加热区域发生改变,在伯努利效应的作用下实现微液滴的移动。本发明所述的一种光致热效应的微液滴操控方法,应用光致热效应和伯努利效应,在光纤光场的照射下,可以实现微液滴的悬浮捕获和操控,具有定点、可控的优势,还具有简单灵活、便于操作的特点。
-
-
-
-
-
-
-
-
-