-
公开(公告)号:CN114535339A
公开(公告)日:2022-05-27
申请号:CN202210114907.5
申请日:2022-01-31
Applicant: 北京科技大学
Abstract: 本发明属于稀有难熔金属领域,涉及一种大尺寸均匀化高纯铼板的加工方法,该将高纯铼酸铵进行多次氢还原处理,制得铼粉,然后装入模具内冷等静压,在低温下氢气烧结预处理和高温致密化烧结,取出高纯铼板坯进行表面酸洗纯净化;对铼板坯进行侧面预轧制,在进行多道次的交叉轧制,直至轧件长度达到成品所要求的长度。最后进行平整工序,控制压下率
-
公开(公告)号:CN113481401B
公开(公告)日:2022-04-05
申请号:CN202110648184.2
申请日:2021-06-10
IPC: C22C1/10 , C22C1/05 , B22F9/04 , C22C21/16 , C01B32/168
Abstract: 本发明属于先进金属材料制备研究领域,提供一种制备Al/CNT复合材料的方法,该方法首先使用电流对多壁碳纳米管进行表面改性,再将改性后的多壁碳纳米管和纯铝粉制备成预合金块,并在喷射成形前将预合金块加入装有2195铝合金熔体的感应炉中,进行超声波分散或者机械搅拌分散后直接喷射成形得到Al/CNT复合材料的方法。本发明的有益效果是:本发明的方法利用在2195铝合金熔体中添加多壁碳纳米管进行分散,降低多壁碳纳米管分散过程中需要的能量,提升制备效率并降低杂质引入,同时利用喷射成形过程的快速冷却降低多壁碳纳米管在凝固后期的团聚,最终得到杂质含量少,多壁碳纳米管分布均匀,且元素少偏析甚至无偏析的2195铝合金坯体。
-
公开(公告)号:CN109465464B
公开(公告)日:2022-02-01
申请号:CN201811541342.9
申请日:2018-12-17
IPC: B22F9/22 , B22F1/07 , B22F1/12 , C22C29/12 , C04B35/117 , C04B35/626
Abstract: 本发明提供一种制备氧化铝基金属陶瓷纳米复合粉末的方法,包括如下步骤,a、前驱体粉末的制备:原料中氧化铝源和金属源的用量为使得最终制备得到的氧化铝基金属陶瓷纳米复合粉末中的包括铁、钴和镍中一种或两种的金属占复合粉末的质量百分含量为3~20%,尿素为反应燃料,葡萄糖为络合剂和分散剂,反应制备得到所述前驱体粉末;b、复合粉末产品的制备:将得到的前驱体粉末进行高温双步热处理,具体包括前驱体粉末先在空气中然后在还原气氛中各于600‑1000℃下保温处理0.5~3小时,得到所述产品。本发明为制备具有纳米金属弥散相‑纳米晶结构的氧化铝基金属陶瓷粉末提供了新的思路,具有生产周期短、成本低、操作方便等优点。
-
公开(公告)号:CN113897529A
公开(公告)日:2022-01-07
申请号:CN202111096410.7
申请日:2021-09-16
Applicant: 北京科技大学
Abstract: 一种稀土氧化物弥散强化铁钴超细晶合金的制备方法,属于复合材料制备技术领域。工艺为:(1)将铁源、钴源、燃料、稀土硝酸盐按照一定比例配成溶液;(2)加热并搅拌,溶液挥发、浓缩后分解,得到前驱体粉末;(3)将前驱体粉末于300~600℃温度范围内,保护气氛下反应1~3小时。(4)将复合粉末进行放电等离子烧结,烧结温度为750~900℃,烧结压力为40~50MPa,烧结时间为3~5分钟;或进行热等静压直接成型,烧结压力为150‑200MPa,烧结温度800~1200℃,烧结时间为1~3小时,最终得到氧化物弥散强化铁钴超细晶合金。本发明所用原料廉价易得,制作过程简便、快捷,工艺能耗少、成本低,得到的复合材料,氧化物颗粒分布均匀,合金力学性能有所提升。
-
公开(公告)号:CN113770376A
公开(公告)日:2021-12-10
申请号:CN202110859993.8
申请日:2021-07-28
Abstract: 本发明属于先进金属材料制备研究领域,特别提供了一种基于喂料打印制备不锈钢零件的方法。该方法采用铁基中间合金与一定量的羰基铁粉均匀混合后得到原料粉末。并将原料粉末与热塑性粘结剂进行捏合、混炼和破碎后得到形状不规则的喂料颗粒,经过筛分后得到所需粒径分布的喂料颗粒,经悬浮整形后将得到高球形度的整形喂料颗粒。采用低温打印,得到具有复杂形状的打印坯体;再经过脱脂和烧结后获得具有复杂形状的316L不锈钢零件。本发明为具有复杂形状316L不锈钢零件提供了新的思路,具有设计灵活、可以低成本制备单件或小中批量的较大尺寸零件。
-
公开(公告)号:CN113695589A
公开(公告)日:2021-11-26
申请号:CN202110859992.3
申请日:2021-07-28
Abstract: 本发明属于先进金属材料制备研究领域,特别提供了一种制备复杂形状镍基高温合金零件的方法,该方法将镍基预合金粉和镍硼粉末按一定比例均匀混合得到原料粉末;将得到的原料粉末与热塑性粘结剂混炼处理得到均匀的由“粘结剂+粉末颗粒”组成的喂料,经过破碎后得到形状不规则的喂料颗粒;再进行悬浮式整形,得到球形喂料颗粒,进行低温打印,得到具有复杂形状的打印坯体,最后经过脱脂和烧结后获得具有复杂形状镍基高温合金零件。本发明为具有复杂形状镍基高温合金的制备提供了新的思路,具有设计灵活、可以低成本制备单件或小中批量的较大尺寸零件的优点。
-
公开(公告)号:CN113462921A
公开(公告)日:2021-10-01
申请号:CN202110649716.4
申请日:2021-06-10
Abstract: 本发明属于先进金属材料制备研究领域,涉及一种制备碳纳米管强化Al‑Zn‑Mg‑Cu超高强铝合金的方法,该方法为:先将多壁碳纳米管、聚丙烯酸和表面改性源溶于去离子水中,超声波分散后得到悬浮溶液,搅拌加热蒸干得到粉末状前驱体,在氩气保护状态下,用电流进行表面改性,得到表面改性的多壁碳纳米管,再与铝粉混合,搅拌均匀后压制成块体,再加入到Al‑Zn‑Mg‑Cu超高强铝合金熔体中,经过机械搅拌或超声波分散5‑30min后,进行喷射成形得到碳纳米管强化Al‑Zn‑Mg‑Cu超高强铝合金。得到碳纳米管强化Al‑Zn‑Mg‑Cu超高强铝合金坯体中杂质含量少,碳纳米管分布均匀,且元素少偏析甚至无偏析。
-
公开(公告)号:CN111847509B
公开(公告)日:2021-08-13
申请号:CN202010550031.X
申请日:2020-06-16
Applicant: 北京科技大学
Abstract: 一种铜铁矿型铜钒氧化物材料及其制备方法,属于无机材料制备领域。该材料主要特征在于铜铁矿型(Delafossite)晶相,晶体结构上由两种交替的层复合而成,即二配位的A位金属层和八面体配位的B位金属层,A位置为铜原子,B位置为钒原子。该材料为粉体,形貌是六边形片、空心六边形片、六边形环中的一种或者多种。材料成分由铜、钒、氧组成。本发明同时提供一种上述材料的水热合成方法,先将铜盐、钒盐、十四烷基胺在水中混合,经反应釜加热,反应结束后收集洗涤。本方法使用了十四烷基胺作为还原剂、络合剂和晶面吸附剂,来调控铜钒氧化物的晶相和形貌,反应过程简单,易工业化推广,制备出的铜铁矿型铜钒氧化物粉末在催化、传感、储能、陶瓷等领域具有广阔的应用前景。
-
公开(公告)号:CN111545231B
公开(公告)日:2021-07-09
申请号:CN202010335411.1
申请日:2020-04-24
Applicant: 北京科技大学
IPC: B01J27/22 , B01J35/10 , B01J21/18 , B01J37/08 , B01J37/06 , B82Y30/00 , B82Y40/00 , C25B1/04 , C25B11/091
Abstract: 一种多孔碳负载碳化钨复合材料的制备方法,属于材料科学技术领域。所述材料是碳化钨纳米颗粒高分散均匀负载于具有大量网络孔道结构的碳骨架。具体制备方法为:以金属硝酸盐、钨源、燃料和可溶性有机碳源为原料,通过溶液燃烧合成反应得到氧化钨和其他金属氧化物均匀镶嵌于碳基体的前驱体,利用协同耦合造孔效应,经后续高温碳化和酸洗除去氧化物,获得比表面积高达1000m2/g以上的多孔碳负载碳化钨材料。本发明原材料易得、工艺简单、对设备要求低,制备的多孔碳负载碳化钨粉体材料颗粒细小、粒度分布窄、分散性好,具有高的比表面积和孔容,碳化钨颗粒均匀负载,不易脱落,作为代铂催化剂可以显著降低电催化剂成本,同时提高其析氢催化性能,具有良好的工业应用前景。
-
公开(公告)号:CN110817879B
公开(公告)日:2021-06-18
申请号:CN201911230662.7
申请日:2019-12-04
Applicant: 北京科技大学
IPC: C01B32/949 , B82Y30/00 , B82Y40/00
Abstract: 一种碳热还原燃烧前驱物合成纳米WC粉末的方法,属于粉末冶金纳米粉末制备技术领域。具体制备方法为:以钨酸铵、氧化剂、燃料为原料,在保护气氛中通过溶液燃烧合成反应制备出纳米针状紫钨,然后将紫钨粉末置于炉中保温,紫钨被氧化成WO3。将制得的WO3与碳黑按照一定配比在球磨机中机械混合得到均匀的混合前驱体粉末。最后,将混合粉末在真空炉中进行原位还原和碳化反应,成功制得纳米WC粉末。本方法设计出一种特殊形貌的WO3—纳米棒状WO3,解决了颗粒状WO3在球磨过程中容易发生团聚的问题。本方法制备的纳米WC粉末性能优异,粒径小、粒度均匀、分散性好、成分和粒径能够精确控制,并且本方法工艺简单、耗能低、效率高、成本低,适合大规模生产。
-
-
-
-
-
-
-
-
-