一种低剂量注入制备绝缘体上半导体材料的方法

    公开(公告)号:CN104425341A

    公开(公告)日:2015-03-18

    申请号:CN201310382838.7

    申请日:2013-08-28

    CPC classification number: H01L21/76254

    Abstract: 本发明提供一种低剂量注入制备绝缘体上半导体材料的方法,包括步骤:1)于第一衬底表面外延一掺杂的单晶薄膜;2)外延一顶层半导体材料;3)沉积绝缘层;4)从所述绝缘层表面将剥离离子注入至所述单晶薄膜下方的第一衬底预设深度的位置;5)提供第二衬底,并键合所述第二衬底及所述绝缘层;6)进行退火处理,使所述单晶薄膜吸附所述剥离离子,最终使所述第一衬底与所述顶层半导体材料从该单晶薄膜处分离。本发明通过控制超薄单晶薄膜的离子掺杂控制其对注入离子的吸附作用,可以采用非常低的剂量注入便可实现智能剥离,而且剥离裂纹发生在超薄层处,裂纹很小,可获得高质量的绝缘体上半导体材料。

    张应变锗MSM光电探测器及其制作方法

    公开(公告)号:CN103985788A

    公开(公告)日:2014-08-13

    申请号:CN201410217764.6

    申请日:2014-05-21

    CPC classification number: Y02P70/521 H01L31/1808 H01L31/0352 H01L31/1085

    Abstract: 本发明提供一种张应变锗光电探测器及其制作方法,该方法至少包括以下步骤:S1:提供一衬底并在其上依次形成牺牲层及锗层;S2:在所述锗层上形成一金属层,所述金属层对所述锗层提供应力;S3:将所述金属层图形化,形成一对金属主基座及一对金属次基座;S4:将所述锗层图形化以在所述金属主基座及金属次基座下分别形成锗主基座及锗次基座,并在每一对锗次基座之间形成至少一条锗桥线;S5:腐蚀掉所述锗桥线下方及所述锗次基座下方的牺牲层,以使所述锗桥线及所述锗次基座悬空,该悬空的锗次基座在所述金属层的应力作用下卷曲使所述锗桥线拉伸,得到张应变锗MSM光电探测器。本发明可提高MSM光电探测器的光电探测性能。

    应变结构及其制作方法
    106.
    发明公开

    公开(公告)号:CN103560157A

    公开(公告)日:2014-02-05

    申请号:CN201310583275.8

    申请日:2013-11-19

    CPC classification number: Y02P70/521 B81B3/0072 B81C1/00666

    Abstract: 本发明提供一种应变结构及其制作方法,该方法至少包括以下步骤:S1:提供一衬底,在所述衬底表面自下而上依次形成一牺牲层及一第一应力层;S2:将所述第一应力层图形化,形成桥状结构;所述桥状结构包括形成于所述牺牲层表面的一对基座及连接该一对基座的至少一根桥梁;S3:在一对所述基座表面形成第二应力层;S4:采用湿法腐蚀去除所述桥梁下方及所述基座相向两端下方的牺牲层,以使所述桥梁及一对所述基座相向两端悬空,该悬空的两端卷曲使所述桥梁拉伸,得到应变结构。本发明可以给一定范围内的任意材料施加高张应力,方法简单有效、与半导体工艺兼容,具有成本低,且制作速度快的优点。

    具有高弛豫和低缺陷密度的SGOI或sSOI的制备方法

    公开(公告)号:CN103219275A

    公开(公告)日:2013-07-24

    申请号:CN201210017889.5

    申请日:2012-01-19

    Abstract: 本发明提供一种具有高弛豫和低缺陷密度的SGOI或sSOI的制备方法。根据本发明的方法,先在衬底的单晶表面进行离子注入后,再形成包含由Si1-xGex/Ge或Si/Si1-xGex形成的超晶格结构的多层材料层;随后,在已形成多层材料层的结构表面低温生长Si1-yGey和/或Si后,进行退火处理,以使表层的Si1-yGey层发生弛豫现象;最后再采用智能剥离技术将已发生弛豫现象的结构中的至少部分层转移到含氧衬底的含氧层表面,以形成SGOI或sSOI结构;由此可有效避免现有超厚缓冲层在材料和时间方面的浪费及现有先长后注对外延层的影响。

    一种张应变Ge薄膜的制备方法及层叠结构

    公开(公告)号:CN103065932A

    公开(公告)日:2013-04-24

    申请号:CN201110324589.7

    申请日:2011-10-24

    Abstract: 本发明提供一种张应变Ge薄膜的制备方法及层叠结构,所述制备方法首先在GaAs衬底上分别外延出InxGa1-xAs层和顶层Ge薄膜,所述InxGa1-xAs层中In组分x为0﹤x≤1,并使所述InxGa1-xAs层的厚度不超过其生长在所述GaAs衬底上的临界厚度,使所述顶层Ge薄膜的厚度不超过其生长在所述InxGa1-xAs层上的临界厚度,以制备出Ge薄膜的样品;其次,对所述样品进行氦离子或氢离子注入,并使氦离子或氢离子的峰值分布在所述InxGa1-xAs层与GaAs衬底相结合的界面下10~1000nm;最后对所述样品进行快速热退火,退火后得到弛豫的InxGa1-xAs层和张应变Ge薄膜,进而达到了用低成本制备出具有张应变、高迁移率Ge薄膜,并能减小InxGa1-xAs缓冲层的厚度、降低其穿透位错密度的目的。

    锗悬浮膜式二维光子晶体微腔及制备方法

    公开(公告)号:CN102590936B

    公开(公告)日:2013-04-24

    申请号:CN201110004002.4

    申请日:2011-01-10

    Abstract: 本发明提供一种锗悬浮膜式二维光子晶体微腔,包括:具有埋氧层、且表层为锗悬浮膜层的半导体基底,其中,所述锗悬浮膜层包含光子晶体微腔,所述光子晶体微腔由周期性排列的孔体构成、但部分区域缺失孔体。此外,本发明还提供了该锗悬浮膜式二维光子晶体微腔的制备方法,即先在半导体基底的锗薄膜层中掺杂以形成n型重掺杂层,随后,对重掺杂层进行微机械加工以便在部分区域形成光子晶体微腔,最后,对整片器件进行湿法腐蚀,其中,可通过控制腐蚀时间以控制侧向腐蚀的程度,从而去除光子晶体微腔下的埋氧层实现悬浮膜。本发明的优点在于:能够通过调节悬浮的锗薄膜的应变从而实现锗向直接带隙的转变,并通过光子晶体微腔的增强作用实现发光效率的提高。

    混合共平面SOI衬底结构及其制备方法

    公开(公告)号:CN103021927A

    公开(公告)日:2013-04-03

    申请号:CN201210575312.6

    申请日:2012-12-26

    Abstract: 本发明提供一种混合共平面SOI衬底结构及其制备方法,所述混合共平面SOI衬底结构包括背衬底、位于背衬底上的埋氧化层以及位于埋氧化层上的顶层硅膜;所述顶层硅膜上形成有若干第一区域和若干第二区域,所述第一区域与第二区域间隔排列,并通过隔离墙隔离,所述隔离墙底部到达所述顶层硅膜表面或所述顶层硅膜内;所述第一区域包括锗硅缓冲层及位于其上的应变硅层或弛豫的锗层;所述第二区域的材料为锗或III-V族化合物。本发明利用SiGe缓冲层技术、刻蚀工艺以及图形衬底外延等技术制备低缺陷密度、高晶体质量的锗,III-V族材料或者应变硅混合共平面的SOI衬底结构,能同时提升不同类型MOS(PMOS或NMOS)器件的性能,在光电集成领域也有广泛的应用前景。

Patent Agency Ranking