一种基于混合加热制备绝缘体上材料的方法

    公开(公告)号:CN104752308B

    公开(公告)日:2017-12-05

    申请号:CN201310732416.8

    申请日:2013-12-26

    Abstract: 本发明提供一种基于混合加热制备绝缘体上材料的方法,包括以下步骤:S1:提供一Si衬底,在所述Si衬底表面外延生长掺杂单晶薄膜;S2:接着再外延生长一待转移层;S3:从所述待转移层正面进行离子注入,使离子注入到所述掺杂单晶薄膜与所述Si衬底的界面以下预设深度;S4:提供表面具有绝缘层的基板与所述待转移层键合形成键合片,并在第一预设温度下退火并保持第一预设时间,以使所述掺杂单晶薄膜吸附离子并形成微裂纹;S5:再将所述键合片在第二预设温度下退火并保持第二预设时间,剥离得到绝缘体上材料;所述第一预设温度高于所述第二预设温度,所述第一预设时间小于所述第二预设时间。本发明可以减小制备周期,降低成本,且无需经过后续CMP处理。

    一种在绝缘衬底上制备图形石墨烯的方法

    公开(公告)号:CN106904599A

    公开(公告)日:2017-06-30

    申请号:CN201510952653.4

    申请日:2015-12-17

    CPC classification number: H01L21/02527 C01P2002/82

    Abstract: 本发明提供一种在绝缘衬底上制备图形石墨烯的方法,包括:1)提供一绝缘衬底,于绝缘衬底上沉积锗薄膜;2)采用光刻刻蚀工艺于锗薄膜中刻蚀出所需图形,形成图形锗薄膜;以及步骤3)以所述图形锗薄膜为催化剂,在高温下生长石墨烯,同时,图形锗薄膜在高温下不断蒸发,并最终被全部去除,获得结合于绝缘衬底上的图形石墨烯。本发明通过在绝缘衬底上制备锗薄膜,并光刻刻蚀所述锗薄膜形成所需图形后,催化生长石墨烯,并在生长的同时将锗薄膜蒸发去除,获得绝缘体上图形石墨烯,克服了采用光刻刻蚀工艺对石墨烯进行刻蚀所带来的光刻胶等污染,提高了绝缘体上图形石墨烯材料的质量及性能。采用本发明的方法可以获得质量很高的图形石墨烯。

    利用低温剥离技术制备绝缘体上材料的方法

    公开(公告)号:CN105428302A

    公开(公告)日:2016-03-23

    申请号:CN201410475087.8

    申请日:2014-09-17

    Abstract: 本发明提供一种利用低温剥离技术制备绝缘体上材料的方法,至少包括以下步骤:首先提供一衬底,在其上依次外延掺杂层及待转移层;然后进行离子注入,使离子注入到所述掺杂层下表面以下预设深度;再提供一表面形成有绝缘层的基板,与待转移层键合形成键合片并进行微波退火处理,使掺杂层吸附离子形成微裂纹从下表面处剥离,得到绝缘体上材料。本发明利用掺杂层吸附剥离及键合来制备绝缘体上材料,其中,对键合片进行微波退火处理,微波退火处理过程中,掺杂层与衬底界面处局域温度较高以致剥离,而键合片整体温度较低,使得掺杂离子不易扩散到待转移层中,且低温不会对所述待转移层及其它层产生不良影响,有利于制备得到高质量的绝缘体上材料。

    利用微波退火技术低温制备GOI的方法

    公开(公告)号:CN105428301A

    公开(公告)日:2016-03-23

    申请号:CN201410475054.3

    申请日:2014-09-17

    Abstract: 本发明提供一种利用微波退火技术低温制备GOI的方法,至少包括以下步骤:首先提供一衬底并在其上依次外延掺杂层及第一Ge层;然后进行离子注入,使离子注入到所述掺杂层下表面以下预设深度;再提供一表面形成有绝缘层的基板,与第一Ge层键合形成键合片,并进行微波退火处理,使掺杂层吸附离子形成微裂纹从下表面处剥离,得到绝缘体上锗。本发明利用掺杂层吸附剥离及键合来制备GOI,其中,对键合片进行微波退火处理,微波退火处理过程中,掺杂层与衬底界面处局域温度较高以致剥离,而键合片整体温度较低,使得掺杂离子不易扩散到第一Ge层中,且低温不会对第一Ge层及其它层产生不良影响,有利于制备得到高质量的GOI。

    一种嵌入超晶格层组制备应变Si的方法

    公开(公告)号:CN103165409B

    公开(公告)日:2015-11-18

    申请号:CN201110419356.5

    申请日:2011-12-14

    Abstract: 本发明提供一种嵌入超晶格层组制备应变Si的方法,该方法首先在Si衬底上外延一Ge组分为x的Si1-xGex层,其次在所述Si1-xGex层上外延一Si层,形成Si1-xGex/Si双层薄膜,然后多次重复外延所述Si1-xGex/Si双层薄膜,在所述Si衬底上制备出超晶格,形成包括至少一种所述超晶格的超晶格层组,接着在所述超晶格层组上外延一Ge组分为y的Si1-yGey层并使所述Si1-yGey层弛豫以形成弛豫Si1-yGey层,由所述超晶格层组和弛豫Si1-yGey层构成虚衬底,最后在所述弛豫Si1-yGey层上外延一Si层,以完成应变Si的制备。本发明通过降低制备应变Si所需的虚衬底厚度,大大节省了外延所需要的时间,不仅降低了外延所需要的成本,而且减少了由于长时间不间断进行外延而对外延设备造成的损伤。

    一种制备高单晶质量的张应变锗纳米薄膜的方法

    公开(公告)号:CN103014847B

    公开(公告)日:2015-08-05

    申请号:CN201210587242.6

    申请日:2012-12-28

    Abstract: 本发明涉及一种制备高单晶质量的张应变锗纳米薄膜的方法,该方法包括以下步骤:提供一GeOI衬底;在该GeOI衬底的顶层锗上外延InxGa1-xAs层,其中,所述InxGa1-xAs层厚度不超过InxGa1-xAs/GeOI结合体的临界厚度,x的取值范围为0~1;在该InxGa1-xAs层上外延Ge纳米薄膜层,形成Ge/InxGa1-xAs/GeOI结合体;所述Ge纳米薄膜的厚度与所述GeOI衬底中顶层锗的厚度相等;且不超过Ge/InxGa1-xAs/GeOI结合体的临界厚度;利用光刻以及RIE技术将Ge/InxGa1-xAs/GeOI结合体进行图形化并得到腐蚀窗口;湿法腐蚀,直至所述埋氧层被腐蚀完全,其余Ge/InxGa1-xAs/Ge结合体与所述底层硅脱离。本发明所制备的张应变锗具有较低的位错密度,较高的单晶质量;通过该种方法所制备的张应变Ge薄膜具有应变大小任意可调的特点;制备的Ge薄膜应变大,迁移率高。

    一种基于混合加热制备绝缘体上材料的方法

    公开(公告)号:CN104752308A

    公开(公告)日:2015-07-01

    申请号:CN201310732416.8

    申请日:2013-12-26

    CPC classification number: H01L21/762 H01L21/265 H01L21/324 H01L21/7624

    Abstract: 本发明提供一种基于混合加热制备绝缘体上材料的方法,包括以下步骤:S1:提供一Si衬底,在所述Si衬底表面外延生长掺杂单晶薄膜;S2:接着再外延生长一待转移层;S3:从所述待转移层正面进行离子注入,使离子注入到所述掺杂单晶薄膜与所述Si衬底的界面以下预设深度;S4:提供表面具有绝缘层的基板与所述待转移层键合形成键合片,并在第一预设温度下退火并保持第一预设时间,以使所述掺杂单晶薄膜吸附离子并形成微裂纹;S5:再将所述键合片在第二预设温度下退火并保持第二预设时间,剥离得到绝缘体上材料;所述第一预设温度高于所述第二预设温度,所述第一预设时间小于所述第二预设时间。本发明可以减小制备周期,降低成本,且无需经过后续CMP处理。

    一种降低Si表面粗糙度的方法

    公开(公告)号:CN102751184B

    公开(公告)日:2015-05-06

    申请号:CN201210254007.7

    申请日:2012-07-20

    Abstract: 本发明提供一种降低Si表面粗糙度的方法,属于半导体领域,包括步骤:首先提供一至少包括SixGe1-x层以及结合于其表面的Si层的层叠结构,采用选择性腐蚀或机械化学抛光法去除所述SixGe1-x层,获得具有残留SixGe1-x材料的Si层粗糙表面,然后采用质量比为1∶3~6∶10~20的NH4OH: H2O2: H2O溶液对所述Si层粗糙表面进行处理,去除所述残留SixGe1-x材料,以获得光洁的Si层表面。本发明可以有效降低去除应变硅表面的SixGe1-x材料残余,降低应变硅表面的粗糙度,获得光洁的应变硅表面,为后续的器件制造工艺带来了极大的便利。本发明工艺简单,适用于工业生产。

    一种厚度可控的绝缘体上半导体材料的制备方法

    公开(公告)号:CN104425342A

    公开(公告)日:2015-03-18

    申请号:CN201310382840.4

    申请日:2013-08-28

    CPC classification number: H01L21/76254

    Abstract: 本发明提供一种厚度可控的绝缘体上半导体材料的制备方法,包括步骤:1)于第一衬底表面外延一掺杂的单晶薄膜;2)依次外延一重掺杂单晶层及一顶层半导体材料;3)将剥离离子注入至单晶薄膜下方的第一衬底预设深度的位置;4)提供表面具有绝缘层的第二衬底,并键合绝缘层及顶层半导体材料;5)使重掺杂单晶层与第一衬底从该单晶薄膜处分离;6)采用预设溶液腐蚀以去除重掺杂单晶层,其中,所述预设溶液对重掺杂单晶层的腐蚀速率大于其对顶层半导体材料的腐蚀速率。本发明通过掺杂的超薄单晶薄膜实现剥离,将剥离面控制在非常薄的一个层面内;通过高选择比的腐蚀工艺,可以制作出高质量且厚度可控性高的绝缘体上半导体材料。

Patent Agency Ranking