-
公开(公告)号:CN114462126B
公开(公告)日:2024-09-20
申请号:CN202210067138.8
申请日:2022-01-20
Applicant: 西南交通大学
IPC: G06F30/13 , G06F30/23 , E01B1/00 , G01L1/00 , G06F111/10 , G06F119/14
Abstract: 本发明公开了一种无砟轨道结构缝位置路基面列车荷载分布模式确定方法,包括S1、确定动车组通过无砟轨道测点时的路基面动应力时程曲线,并将其转化为路基面动应力空间分布曲线;S2、根据路基面动应力空间分布曲线,确定无砟轨道结构缝位置路基面纵向分布范围;S3、根据路基面纵向分布范围,确定无砟轨道结构缝位置路基面动应力峰值,进而确定构缝位置路基面列车荷载分布模式。本方法明确了CRTSⅢ型板式无砟轨道结构缝对路基面动应力产生集中效应的影响,确定了结构缝位置路基面荷载作用模式,是对高速铁路CRTSⅢ型板式无砟轨道基床结构设计方法的补充完善。
-
公开(公告)号:CN114510829A
公开(公告)日:2022-05-17
申请号:CN202210067995.8
申请日:2022-01-20
Applicant: 西南交通大学
IPC: G06F30/20 , G06F30/13 , G06F119/14
Abstract: 本发明公开了高速铁路无砟轨道结构路基面列车荷载分布模式确定方法,包括S1、确定通过高速铁路无砟轨道测点时的路基面动应力时程曲线,并将其转化为路基面动应力空间分布曲线;S2、确定列车单轴荷载作用于无砟轨道结构的单轴荷载路基面动应力纵向分布范围及峰值;S3、由单轴荷载路基面动应力纵向分布范围和转向架轴距的关系,确定转向架荷载路基面动应力纵向形态及峰值,进而确定列车荷载分布模式。本发明方法通过单轴荷载纵向分布范围和动车组转向架轴距之间的关系确定无砟轨道结构路基面动应力纵向分布形态和动应力峰值,明确了不同无砟轨道结构型式和动车组车型对路基面动应力纵向分布形态和峰值的影响,是对高速铁路无砟轨道基床结构设计方法的改善。
-
公开(公告)号:CN109297881B
公开(公告)日:2020-12-11
申请号:CN201811186712.1
申请日:2018-10-12
Applicant: 西南交通大学
IPC: G01N15/08
Abstract: 本发明公开了一种粗粒土渗透试验边壁处理层厚度的确定方法。由颗粒筛分和颗粒密度试验,测得粗粒土各粒径组含量、中值粒径和颗粒密度,计算试样的代表粒径d;借助试样最大干密度和最小干密度试验,得到粗粒土试样实际孔隙比e下的平面孔隙比修正系数ξ,推算出反映在平面上等直径圆堆积模型的堆积角度α,并最终确定在渗透仪直径D条件下边壁处理层厚度h。该方法原理明确、操作和计算简便,利用常规的室内土工试验手段就能准确地确定边壁处理层的厚度,为粗粒土渗透试验提供了合理的边壁处理层厚度依据。
-
公开(公告)号:CN106066350B
公开(公告)日:2019-01-18
申请号:CN201610344270.3
申请日:2016-05-21
Applicant: 西南交通大学
IPC: G01N27/22
Abstract: 一种基于套管式探头TDR法的土体质量含水率修正测试方法,包括以下步骤:A、标定:通过前期四个不同土体试样的标定试验,获得了TDR水分传感器测出的各个土体试样体积含水率θi、烘干法测定的各个土体试样的真实质量含水率wi,进而通过函数对上述测试值的拟合,得出未知参数a的值,从而明确了此函数关系式。B、测试:测试出待测土体的干密度为ρd和TDR水分传感器至待测土体边界最小距离L/2;利用套管式探头TDR水分传感器测出待测土体体积含水率测试值θ,即得待测土体质量含水率w,该法消除了套管式探头TDR法中传感器有效测试范围内其他介质对待测土体介电特性的影响,提高了测试土体含水率的准确性,从而为岩土工程的设计与施工提供更加可靠、准确的试验数据。
-
公开(公告)号:CN114510829B
公开(公告)日:2024-09-10
申请号:CN202210067995.8
申请日:2022-01-20
Applicant: 西南交通大学
IPC: G06F30/20 , G06F30/13 , G06F119/14
Abstract: 本发明公开了高速铁路无砟轨道结构路基面列车荷载分布模式确定方法,包括S1、确定通过高速铁路无砟轨道测点时的路基面动应力时程曲线,并将其转化为路基面动应力空间分布曲线;S2、确定列车单轴荷载作用于无砟轨道结构的单轴荷载路基面动应力纵向分布范围及峰值;S3、由单轴荷载路基面动应力纵向分布范围和转向架轴距的关系,确定转向架荷载路基面动应力纵向形态及峰值,进而确定列车荷载分布模式。本发明方法通过单轴荷载纵向分布范围和动车组转向架轴距之间的关系确定无砟轨道结构路基面动应力纵向分布形态和动应力峰值,明确了不同无砟轨道结构型式和动车组车型对路基面动应力纵向分布形态和峰值的影响,是对高速铁路无砟轨道基床结构设计方法的改善。
-
公开(公告)号:CN116467550A
公开(公告)日:2023-07-21
申请号:CN202310425283.3
申请日:2023-04-19
Applicant: 西南交通大学
Abstract: 本发明公开了一种高铁无砟轨道高低不平顺谱百分位数确定方法,考虑了高铁无砟轨道不平顺频域统计特征,能够确定目标路段轨道平顺性相应的轨道不平顺谱百分位数α,克服了规范中高速铁路无砟轨道平顺性管理值只考虑特定弦长、难以全面反映轨道不平顺频域特性的问题。根据本发明确定轨道不平顺谱百分位数α,只需对线路目标路段的轨面进行水准测量,即可简便、快捷地计算轨道不平顺谱百分位数α,便于工程应用,且与基于轨检车不平顺检测数据的统计确定方法相比,显著降低了成本,有效节约了时间。
-
公开(公告)号:CN114722327B
公开(公告)日:2023-03-21
申请号:CN202210454138.3
申请日:2022-04-27
Applicant: 西南交通大学
Abstract: 本发明公开了一种基于动应力和振动位移时程信号的路基动位移确定方法,包括以下步骤:S1:采集列车运行引起的路基动应力时程信号和路基振动位移时程信号;S2:获取路基动应力归一化时程曲线和路基振动位移归一化时程曲线;S3:获取下包络曲线和上包络曲线;S4:确定路基动位移时程曲线;S5:确定铁路路基动位移值。本方法基于实测路基动应力时程曲线和路基振动位移时程曲线,运用信号处理技术修正得到路基动位移时程曲线,测试所用传感器直接安放于测点部位,不需选取额外的不动点和刚性支架,克服了现有测试方法受环境所限引发的不动点位置与刚性支架尺寸之间的矛盾。
-
公开(公告)号:CN109297881A
公开(公告)日:2019-02-01
申请号:CN201811186712.1
申请日:2018-10-12
Applicant: 西南交通大学
IPC: G01N15/08
CPC classification number: G01N15/088
Abstract: 本发明公开了一种粗粒土渗透试验边壁处理层厚度的确定方法。由颗粒筛分和颗粒密度试验,测得粗粒土各粒径组含量、中值粒径和颗粒密度,计算试样的代表粒径d;借助试样最大干密度和最小干密度试验,得到粗粒土试样实际孔隙比e下的平面孔隙比修正系数ξ,推算出反映在平面上等直径圆堆积模型的堆积角度α,并最终确定在渗透仪直径D条件下边壁处理层厚度h。该方法原理明确、操作和计算简便,利用常规的室内土工试验手段就能准确地确定边壁处理层的厚度,为粗粒土渗透试验提供了合理的边壁处理层厚度依据。
-
公开(公告)号:CN114969980B
公开(公告)日:2024-09-10
申请号:CN202210663480.4
申请日:2022-06-13
Applicant: 西南交通大学
IPC: G06F30/15 , G06F30/20 , G06F111/08 , G06F119/14
Abstract: 本发明公开了一种高速铁路无砟轨道路基列车荷载动力系数确定方法,考虑了行车速度、轨道平顺水平对高速铁路无砟轨道路基列车荷载动力系数概率分布的影响,能够确定适应不同行车速度、轨道平顺状态与概率水平组合下路基列车荷载动力系数,克服了规范中高速铁路路基列车荷载动力系数确定方法对不同速度等级与轨道平顺水平取固定值的问题。根据本发明确定路基动力系数,只需根据线路目标路段的轨道检测高低不平顺数据,即可简便、快捷地估算路基列车荷载动力系数,便于工程应用,且与现场实车测试和动力学仿真相比,显著降低了成本,有效节约了时间。按本发明确定的无砟轨道路基列车荷载动力系数,精度较好,能满足工程应用的要求。
-
公开(公告)号:CN113771917A
公开(公告)日:2021-12-10
申请号:CN202111163264.5
申请日:2021-09-30
Applicant: 西南交通大学
IPC: B61L25/02
Abstract: 本发明公开了一种基于路基动应力时程信号的列车运行速度确定方法,包括:获取列车的车况数据;测量路基动应力时程信号,建立路基动应力时程曲线;根据路基动应力时程曲线,识别得到路基动应力时程信号基频;根据列车的车况数据和路基动应力时程信号基频,确定列车运行速度。列车的车况数据是易测得及易获取的简单客观数据,而通过路基动应力时程信号基频进行计算,则合理规避了路基动应力时程曲线高频杂波的影响,克服了现有方法由曲线波形毛刺、畸变以及峰值偏移引起的系统误差,运行速度计算结果更准确可靠。
-
-
-
-
-
-
-
-
-