-
公开(公告)号:CN117834297B
公开(公告)日:2024-05-28
申请号:CN202410230015.0
申请日:2024-02-29
Applicant: 浪潮电子信息产业股份有限公司
Abstract: 本发明公开了一种攻击检测方法、装置、系统、电子设备及可读存储介质,应用于数据安全技术领域。其中,方法应用于边缘计算设备的联邦学习过程中,边缘云服务器基于各边缘计算设备的初始网络模型对目标数据集的推理结果生成有权无向图,基于该有权无向图将边缘计算设备划分为多个数据同性簇,并为之选择簇头。簇头获取属于同一个簇内的边缘计算设备的本地模型参数,基于待检测攻击的攻击特点确定具有攻击特征的边缘计算设备的模型参数更新特征,根据同一簇内各边缘计算设备的本地模型参数确定是否存在攻击设备。本发明可以解决相关技术中无法精准检测攻击导致用户数据无法得到保护的问题,能够有效检测恶意攻击设备,提升用户数据的安全性。
-
公开(公告)号:CN117808128B
公开(公告)日:2024-05-28
申请号:CN202410230128.0
申请日:2024-02-29
Applicant: 浪潮电子信息产业股份有限公司
Abstract: 本发明公开了一种数据异构条件下的图像处理方法、联邦学习方法及装置,涉及图像处理技术领域,边缘云服务器根据数据分布相似性对边缘计算设备分簇,簇内边缘计算设备具有相似的数据分布,可以让模型更好的捕捉到数据的特征。边缘计算设备采用残差分级训练的方式进行模型训练,实现细粒度模型训练,缓解数据分布差异大的问题。边缘计算设备与边缘云服务器在联邦学习过程中进行三层模型参数聚合,得到准确可靠的图像处理模型,最终边缘计算设备使用该准确可靠的图像处理模型进行图像处理,可以提升图像处理的准确性与可靠性。
-
公开(公告)号:CN117811845B
公开(公告)日:2024-05-24
申请号:CN202410230012.7
申请日:2024-02-29
Applicant: 浪潮电子信息产业股份有限公司
IPC: H04L9/40 , H04L67/10 , H04L41/142 , G06F18/23 , G06F18/213 , G06F18/22 , G06F21/62
Abstract: 本发明公开了一种威胁检测及模型训练方法、装置、系统、电子设备、介质,应用于数据安全技术领域。其中,方法包括边缘云服务器基于各边缘计算设备的推理结果生成的有权无向图进行数据同性簇划分,同时选择簇头。边缘计算设备基于分簇信息将本地模型参数发送至相应簇头,簇头根据其簇内设备的模型参数和网络攻击特点确定攻击设备,并将去除攻击设备后的其余本地模型参数的簇内聚合结果发送至边缘云服务器进行全局聚合;根据全局模型聚合参数不断更新本地模型参数直至全局型收敛,得到执行威胁检测任务的威胁检测模型。本发明可以解决相关技术中无法精准检测攻击导致用户数据无法得到保护的问题,能够有效提高威胁检测精度。
-
公开(公告)号:CN117834297A
公开(公告)日:2024-04-05
申请号:CN202410230015.0
申请日:2024-02-29
Applicant: 浪潮电子信息产业股份有限公司
Abstract: 本发明公开了一种攻击检测方法、装置、系统、电子设备及可读存储介质,应用于数据安全技术领域。其中,方法应用于边缘计算设备的联邦学习过程中,边缘云服务器基于各边缘计算设备的初始网络模型对目标数据集的推理结果生成有权无向图,基于该有权无向图将边缘计算设备划分为多个数据同性簇,并为之选择簇头。簇头获取属于同一个簇内的边缘计算设备的本地模型参数,基于待检测攻击的攻击特点确定具有攻击特征的边缘计算设备的模型参数更新特征,根据同一簇内各边缘计算设备的本地模型参数确定是否存在攻击设备。本发明可以解决相关技术中无法精准检测攻击导致用户数据无法得到保护的问题,能够有效检测恶意攻击设备,提升用户数据的安全性。
-
公开(公告)号:CN117811845A
公开(公告)日:2024-04-02
申请号:CN202410230012.7
申请日:2024-02-29
Applicant: 浪潮电子信息产业股份有限公司
IPC: H04L9/40 , H04L67/10 , H04L41/142 , G06F18/23 , G06F18/213 , G06F18/22 , G06F21/62
Abstract: 本发明公开了一种威胁检测及模型训练方法、装置、系统、电子设备、介质,应用于数据安全技术领域。其中,方法包括边缘云服务器基于各边缘计算设备的推理结果生成的有权无向图进行数据同性簇划分,同时选择簇头。边缘计算设备基于分簇信息将本地模型参数发送至相应簇头,簇头根据其簇内设备的模型参数和网络攻击特点确定攻击设备,并将去除攻击设备后的其余本地模型参数的簇内聚合结果发送至边缘云服务器进行全局聚合;根据全局模型聚合参数不断更新本地模型参数直至全局型收敛,得到执行威胁检测任务的威胁检测模型。本发明可以解决相关技术中无法精准检测攻击导致用户数据无法得到保护的问题,能够有效提高威胁检测精度。
-
公开(公告)号:CN117808125A
公开(公告)日:2024-04-02
申请号:CN202410230004.2
申请日:2024-02-29
Applicant: 浪潮电子信息产业股份有限公司
Abstract: 本发明公开了一种模型聚合方法、装置、设备、联邦学习系统及存储介质,属于边缘计算领域,用于对边缘计算设备中待聚合的模型参数进行筛选,解决了不重要的模型参数传输影响模型训练效率以及模型精度的问题。分别确定本地网络模型的各个模型参数对于本地网络模型性能的第一影响程度以及各个骨干网络层对于本地网络模型性能的第二影响程度,结合第一、第二影响程度对模型参数进行筛选,可剔除对本地网络模型性能影响较小的模型参数,不但降低了数据传输成本,提升了数据传输效率,而且避免了重要程度较低的模型参数对模型精度的影响,使中心服务器在工业设备故障预测、网络安全问题识别与图片分类时发挥最优的效果。
-
公开(公告)号:CN115858848A
公开(公告)日:2023-03-28
申请号:CN202310166849.5
申请日:2023-02-27
Applicant: 浪潮电子信息产业股份有限公司
IPC: G06F16/583 , G06F16/33 , G06N3/042 , G06N3/0455 , G06N3/08
Abstract: 本申请公开了图文互检方法及装置、训练方法及装置、服务器、介质,涉及数据处理技术领域,该训练方法包括:构建图像多连接特征编码器和文本特征编码器;其中,图像多连接特征编码器包括:图像分类网络、图像检测网络、图像的图结构构建网络;基于图像多连接特征编码器和文本特征编码器进行网络构建,得到初始图文互检网络;构造图文检索损失函数;基于图文检索损失函数和训练数据对初始图文互检网络进行训练,得到图文互检网络。提高对多模态数据进行处理的效果和推理准确度。
-
公开(公告)号:CN115759183A
公开(公告)日:2023-03-07
申请号:CN202310016212.8
申请日:2023-01-06
Applicant: 浪潮电子信息产业股份有限公司
Abstract: 本申请公开了一种多结构文本图神经网络的相关方法和相关装置,该方法包括:基于多结构文本的不同语义信息进行图网络构建,得到初始多结构文本图神经网络;将正负样本之间的距离越来越远为目标构造对比损失函数;基于对比损失函数和训练数据对初始多结构文本图神经网络进行训练,得到多结构文本图神经网络。以提高对多结构文本进行处理的效果,提高推理准确度。
-
公开(公告)号:CN118316877B
公开(公告)日:2024-08-20
申请号:CN202410726090.6
申请日:2024-06-06
Applicant: 浪潮电子信息产业股份有限公司
IPC: H04L47/12 , H04L47/22 , H04L1/1829 , H04L1/1867
Abstract: 本发明涉及通信技术领域,具体公开了一种网络拥塞控制方法、系统、装置、设备及存储介质,通过在基于传输控制协议发送报文时若根据接收端设备的应答信息确定发送端设备满足快速重传条件,获取历史慢启动阈值对应的传输成功记录,并根据历史慢启动阈值对应的传输成功记录确定发送端设备采用历史慢启动阈值的传输稳定性以从中选出目标慢启动阈值,得到了适应通信网络情况变化的慢启动阈值,利用该目标慢启动阈值重置发送端设备的慢启动阈值,以使发送端设备根据目标慢启动阈值更新拥塞窗口值后继续执行报文发送任务,解决了慢启动阈值采用固定减半的方法无法自适应网络变化情况的问题,提高了通信效率。
-
公开(公告)号:CN117808126B
公开(公告)日:2024-05-28
申请号:CN202410230008.0
申请日:2024-02-29
Applicant: 浪潮电子信息产业股份有限公司
IPC: G06N20/00 , G06N5/04 , G06F18/22 , G06V10/764 , G06Q10/04
Abstract: 本发明公开了一种机器学习方法、装置、设备、联邦学习系统及存储介质,属于边缘计算领域,用于在模型聚合过程中识别并剔除恶意用户的模型数据,解决了恶意用户攻击导致模型精度下降的问题。一方面边缘计算设备可以在簇内选择与自身的相关性达标的边缘计算设备的模型参数对自身的模型参数进行更新,另一方面簇头在进行簇内聚合时可以排除异常的边缘计算设备的模型参数,通过两层的风险识别,可以精准的识别并忽略异常的模型参数,排除了风险,有利于提升最终得到的全局网络模型的性能,使中心服务器在工业设备故障预测、网络安全问题识别与图片分类时发挥最优的效果,也避免了全局网络模型学习到恶意用户希望的特定行为。
-
-
-
-
-
-
-
-
-