基于Bert-LSTM的文本多特征分类方法及装置

    公开(公告)号:CN114547303B

    公开(公告)日:2024-10-29

    申请号:CN202210165299.0

    申请日:2022-02-18

    Abstract: 本发明公开了一种基于Bert‑LSTM的文本多特征分类方法及装置,属于文本分类技术领域,其中,该方法包括:确定待分类文本数据集,并划分为训练集和测试集;构建基于Bert‑LSTM的文本多特征分类模型;利用训练集对文本多特征分类模型进行训练,得到最优文本多特征分类模型;将待分类文本数据输入最优文本多特征分类模型中,计算待分类文本数据的得分,根据得分将其划分到预设对应类别中。该方法使用BERT以及双向长短期记忆网络等构建基于Bert‑LSTM的文本多特征分类模型,利用挖掘文本多方面的词特征信息和词义潜在语义表示特征信息,融入文本向量,模型在训练过程中充分利用多特征信息,提升了文本分类的性能。

    一种基于图神经网络挖掘用户长短期兴趣的序列推荐方法

    公开(公告)号:CN114519145A

    公开(公告)日:2022-05-20

    申请号:CN202210160090.5

    申请日:2022-02-22

    Abstract: 本发明提出了一种基于图神经网络挖掘用户长短期兴趣的序列推荐方法,获得用户个人信息和用户交互序列数据集,将数据集进行预处理并分为训练集和测试集;构建基于图神经网络挖掘用户长短期兴趣的序列推荐模型;对所述基于图神经网络挖掘用户长短期兴趣的序列推荐模型进行训练;将待推荐用户的个人信息和交互序列输入到训练后的基于图神经网络挖掘用户长短期兴趣的序列推荐模型,计算待推荐项目相对于该用户的推荐得分,根据推荐得分将项目推荐给用户;本发明解决序列推荐场景中没有办法有效捕获用户长短期兴趣,并难以分辨噪声的问题。

Patent Agency Ranking