基于毫米波雷达的心率估计方法

    公开(公告)号:CN115708675B

    公开(公告)日:2025-05-16

    申请号:CN202211461927.6

    申请日:2022-11-21

    Abstract: 本发明提供一种基于毫米波雷达的心率估计方法,通过使用毫米波雷达对人体进行采样,获得多个调频连续波的扫频信号;构成距离‑慢时间矩阵,并定位人体到雷达的距离;使用反正切函数提取人体相位,利用相位展开函数来展开相变超过设定阈值的相位,获得相邻帧相位差,使用内插值法来平滑超过阈值的差值;采用小波变换去除平滑后相位信号的噪声,获得重构后的相位信号;结合EEMD‑ICA方法分离重构后的相位信号中的心跳信号、呼吸信号、呼吸谐波和噪声,得到心跳波形;使用多信号分类算法构造空间谱函数,通过谱峰搜索对心跳频率做出估计;该方法能够准确地分离出心跳信号,大幅提高心跳频率估计的准确性。

    一种基于迭代式欠采样的代价敏感集成分类方法

    公开(公告)号:CN119475097A

    公开(公告)日:2025-02-18

    申请号:CN202411664305.2

    申请日:2024-11-20

    Abstract: 本发明涉及一种基于迭代式的欠采样代价敏感集成分类方法,属于医疗数据分析技术领域,尤其适用于处理不平衡数据集中的疾病预测模型。本发明通过迭代式的欠采样策略,动态调整多数类样本的采样概率,确保在训练过程中重点关注少数类样本的特征,同时避免丢失多数类样本的重要信息。结合代价敏感学习和集成学习,提出了一种能够在保持分类器整体准确率的同时,显著提高少数类样本预测性能的分类方法。该方法具有良好的适应性,适用于多种不平衡数据集场景,在医疗数据分析和疾病预警中展现了出色的应用效果。

    基于毫米波雷达的人体点云解析方法

    公开(公告)号:CN119418071A

    公开(公告)日:2025-02-11

    申请号:CN202411545743.7

    申请日:2024-11-01

    Abstract: 本发明属于雷达点云识别处理技术领域,公开了一种基于毫米波雷达的人体点云解析方法,该方法将从人身上捕获的雷达点云作为输入,识别出与点云中的每个点对应的身体部,为点云进行分组、解析,将毫米波雷达采集到的点云数据首先传入多层感知机中以进行特征抽取,随后特征通过编码模块进行学习,随后采用对称的解码器结构,将局部特征解码为预测的人体解析信息,训练完毕后保存模型并用来进行人体点云的解析以及后续的姿态估计任务。本发明提高在稀疏点云下模型的点云解析任务准确度,提升系统的鲁棒性;降低网络结构复杂度,降低网络训练开销,提高了运算效率,在较少训练轮次的情况下可大幅提高人体解析的精度。

    基于轻量级卷积神经网络的肌电手势识别方法

    公开(公告)号:CN114004257B

    公开(公告)日:2024-11-22

    申请号:CN202111289093.0

    申请日:2021-11-02

    Abstract: 基于轻量级卷积神经网络的肌电手势识别方法,提取传统方法中广泛使用的时域特征,与原始肌电数据进行了结合,多角度地表征了肌电信号,可以在一定程度上提高手势识别的准确率;通过标签平滑、Leaky Relu激活函数的替换等一系列操作,提高了网络的泛化能力、拟合能力,可以进一步提高手势识别的精度;以轻量级网络为基础,使用深度可分离卷积代替传统的卷积,在不降低识别精度的同时,可以减少参数量、计算量,缩短训练时间,更加适合移动设备等应用场景;借鉴跨阶段局部网络的思想,采用局部过渡层,设计简化的融合策略,改进了骨干网络模型,可以实现进一步的轻量化。

    一种基于指纹和指静脉的多模态识别方法

    公开(公告)号:CN114913610B

    公开(公告)日:2024-11-15

    申请号:CN202210671731.3

    申请日:2022-06-15

    Abstract: 一种基于指纹和指静脉的多模态识别方法,将采集到的指纹、指静脉图片,分别作为网络的独立输入,用于特征提取和分析;分别从通道与空间的维度,通过注意力机制,分析指纹与对应的指静脉之间的相关性,融合指纹与指静脉特征;使用Softmax函数,确定最终的生物特征识别结果。本方法预处理操作简单,只需要提取指纹、指静脉的ROI即可,可以最大限度地保存图像中的细节特征,减少额外的计算机资源消耗;相比于现有使用单一生物模态的生物特征识别方法,本发明提出融合指纹、指静脉图像,可显著增加生物特征的判别性特征,通过挖掘不同生物特征之间的互补性信息,提高生物特征识别系统的准确率。

    一种融合实体描述的常见病知识图谱链接预测方法

    公开(公告)号:CN117371525A

    公开(公告)日:2024-01-09

    申请号:CN202311318527.4

    申请日:2023-10-12

    Abstract: 本发明属于医学知识表示和知识图谱补全领域,公开了一种融合实体描述的常见病知识图谱链接预测方法,包括获取实体描述数据集和事实三元组数据集;构建实体邻接矩阵和关系类型邻接矩阵,通过多关系图卷积神经网络,使实体节点聚合不同关系类型一阶邻居节点信息,充分学习图结构信息,得到基于图结构的实体嵌入和关系嵌入;对实体描述数据集进行预处理,获得初始词嵌入矩阵;对于图结构向量表示和实体描述向量表示进行联合学习,最终得到实体的最终表示,使用损失函数优化参数。本发明基于开源数据,构建中文常见病知识图谱,融合医疗实体描述信息,增强三元组实体表示的语义信息,提高链接预测的准确率。

    一种基于FMCW雷达的人员检测系统及方法

    公开(公告)号:CN115792884A

    公开(公告)日:2023-03-14

    申请号:CN202211096668.1

    申请日:2022-09-08

    Abstract: 一种基于FMCW雷达的人员检测系统及方法,此人员检测系统装置包括雷达收发射频前端模块,信号处理模块,识别模块和终端显示界面。雷达收发射频前端模块的输出信号输入至信号处理模块,信号处理模块的输出信号传输至识别模块,识别模块的输出端与终端显示界面相连;此人员检测方法包括步骤:1)获取各个雷达天线接收到的目标回波信号;目标回波信号由多个接收天线接收到的脉冲返回信号组成;最终作为射频前端的输出输入至信号处理模块;2)信号处理模块对信号进行滤波、快速傅里叶变换处理后传输到识别模块;3)识别模块实现人员的智能定位后将结果传输给终端显示界面进行显示。本发明具有整体系统架构简洁、可移植性高、处理速度快等优点。

    一种基于多传感器的非侵入式跌倒检测方法及系统

    公开(公告)号:CN112617813B

    公开(公告)日:2023-02-14

    申请号:CN202011471969.9

    申请日:2020-12-15

    Abstract: 本发明公开了跌倒检测技术领域的一种基于多传感器的非侵入式跌倒检测方法及系统,解决了老人在浴室等私密空间内发生跌倒时的隐私保护问题,具有检测准确度高,虚警率低等特点。分别采集被监测对象反射的毫米波雷达信号和被监测对象辐射的热释电红外信号;对采集到的被监测对象反射的毫米波雷达信号进行傅里叶变换,生成毫米波雷达特征矩阵,进而获取毫米波雷达最优特征矩阵;对采集到的被监测对象辐射的热释电红外信号进行傅里叶变换并进行特征提取,获取热释电红外信号级联特征矩阵;将毫米波雷达最优特征矩阵和热释电红外信号级联特征矩阵串联并获取最优级联特征矩阵;以最优级联特征矩阵作为决策分类器的输入,输出被监测对象的状态信息。

Patent Agency Ranking