基于轻量级卷积神经网络的肌电手势识别方法

    公开(公告)号:CN114004257B

    公开(公告)日:2024-11-22

    申请号:CN202111289093.0

    申请日:2021-11-02

    Abstract: 基于轻量级卷积神经网络的肌电手势识别方法,提取传统方法中广泛使用的时域特征,与原始肌电数据进行了结合,多角度地表征了肌电信号,可以在一定程度上提高手势识别的准确率;通过标签平滑、Leaky Relu激活函数的替换等一系列操作,提高了网络的泛化能力、拟合能力,可以进一步提高手势识别的精度;以轻量级网络为基础,使用深度可分离卷积代替传统的卷积,在不降低识别精度的同时,可以减少参数量、计算量,缩短训练时间,更加适合移动设备等应用场景;借鉴跨阶段局部网络的思想,采用局部过渡层,设计简化的融合策略,改进了骨干网络模型,可以实现进一步的轻量化。

    基于轻量级卷积神经网络的肌电手势识别方法

    公开(公告)号:CN114004257A

    公开(公告)日:2022-02-01

    申请号:CN202111289093.0

    申请日:2021-11-02

    Abstract: 基于轻量级卷积神经网络的肌电手势识别方法,提取传统方法中广泛使用的时域特征,与原始肌电数据进行了结合,多角度地表征了肌电信号,可以在一定程度上提高手势识别的准确率;通过标签平滑、Leaky Relu激活函数的替换等一系列操作,提高了网络的泛化能力、拟合能力,可以进一步提高手势识别的精度;以轻量级网络为基础,使用深度可分离卷积代替传统的卷积,在不降低识别精度的同时,可以减少参数量、计算量,缩短训练时间,更加适合移动设备等应用场景;借鉴跨阶段局部网络的思想,采用局部过渡层,设计简化的融合策略,改进了骨干网络模型,可以实现进一步的轻量化。

    基于多分类器卷积神经网络的联合训练方法

    公开(公告)号:CN113269306A

    公开(公告)日:2021-08-17

    申请号:CN202110553129.5

    申请日:2021-05-20

    Abstract: 基于多分类器卷积神经网络的联合训练方法,包括步骤:分割训练样本;训练单分类器卷积神经网络;训练多分类器卷积神经网络;换下一批训练样本;单独训练线性分类器。本发明提出的参数更新方式,利用置信值预估出每个样本为此层易分类样本的概率,并作用于每层的误差上,通过加上这个误差,即一定梯度的正方向,调和了多走的距离。提出的新的参数更新方式通过使用来表示此分类样本为前面层的易分类样本的概率,量化了需要加上的误差的必要性。提出的新的训练方式,先训练单分类器卷积神经网络,再训练每层带线性分类器的多分类器卷积神经网络,先给予每层卷积层参数一定的训练,有益于每层的线性分类器更加专注于本层卷积层所提取的特征的识别。

    一种基于双分支多流网络的肌电信号手势识别方法

    公开(公告)号:CN113988135A

    公开(公告)日:2022-01-28

    申请号:CN202111273722.0

    申请日:2021-10-29

    Abstract: 一种基于双分支多流网络的肌电信号手势识别方法,将每一个采集电极获得的肌电信号数据,经过数据预处理后,直接作为网络流的一个独立输入,并构建了合适的模型架构与这一输入方式相匹配。相较于传统的先合并数据后分割方式,该方式在数据预处理时更加简便,同时能够减少因分割操作带来的时间开销,提高模型的运行效率;构建的网络模型分别从整体与局部的角度,分析肌电信号与对应手势之间的内在关联性,同时利用投票机制结合两个分支网络的输出来确定最终识别结果,使两个分支网络形成互补效益,弥补了各自的固有缺陷,进而提高手势识别的准确度。

Patent Agency Ranking