-
公开(公告)号:CN117150785B
公开(公告)日:2024-05-24
申请号:CN202311139124.3
申请日:2023-09-05
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
Abstract: 本发明涉及大豆生长监测技术领域,具体公开了一种大豆生长全生育期仿真方法及系统,所述方法包括根据预设的传感器定时获取大豆的生长环境参数;所述生长环境参数为含有时间索引的矩阵组;根据所述生长环境参数确定大豆的生长参数;根据监控设备获取大豆的生长状态,将生长状态向人工端发送;根据生长状态和生长参数确定预测状态,根据预测状态实时验证生长状态,根据验证结果修正大豆的生长状态的判定过程。本发明在保证了真实度的情况下,将生长状态由图像转换为其他数据,比如文本数据,降低了数据量,缓解了数据压力。
-
-
公开(公告)号:CN117150785A
公开(公告)日:2023-12-01
申请号:CN202311139124.3
申请日:2023-09-05
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
Abstract: 本发明涉及大豆生长监测技术领域,具体公开了一种大豆生长全生育期仿真方法及系统,所述方法包括根据预设的传感器定时获取大豆的生长环境参数;所述生长环境参数为含有时间索引的矩阵组;根据所述生长环境参数确定大豆的生长参数;根据监控设备获取大豆的生长状态,将生长状态向人工端发送;根据生长状态和生长参数确定预测状态,根据预测状态实时验证生长状态,根据验证结果修正大豆的生长状态的判定过程。本发明在保证了真实度的情况下,将生长状态由图像转换为其他数据,比如文本数据,降低了数据量,缓解了数据压力。
-
公开(公告)号:CN117036829A
公开(公告)日:2023-11-10
申请号:CN202311278518.7
申请日:2023-10-07
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06V10/74 , G06N3/0464 , G06N3/08
Abstract: 一种基于原型学习实现标签增强的叶片细粒度识别方法和系统,包括:构建细粒度叶片分类数据集;将训练图像输入模型并得到最后一层卷积网络输出的特征向量,按照图像类别标签获取每个类的平均特征值;将训练图像输入上述卷积网络,计算其在最后一个卷积层输出的向量与所有原型特征的相似度;将上述相似度结果与输入图像的真实标签进行加权融合,获得软标签;根据输入图像的真实标签,对原型特征库中对应的原型向量进行迭代更新;获取输入图像经过网络分类层输出的预测标签;将预测标签与软标签进行相似度计算,作为损失函数指导整个系统的训练;将待测图像输入训练完成的网络进行分类预测,根据预测的标签分布确定图像类别。
-
公开(公告)号:CN116992919A
公开(公告)日:2023-11-03
申请号:CN202311269915.8
申请日:2023-09-28
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06N3/042 , G06N3/0464 , G06N3/0499 , G06N3/084 , G16B40/00 , G06F18/213 , G06F18/22
Abstract: 本发明公开了一种基于多组学的植物表型预测方法和装置,该方法基于图卷积神经网络,将多组学如基因组、转录组、代谢组的数据作为图节点,不同组学之间的关联程度作为图的边来构建每个植株的图结构数据,将构建的图结构数据输入图卷积神经网络中,提取节点特征,通过Transformer网络更新节点特征,节点特征拼接后输入全连接层,输出表型预测值,利用整个图结构融合多组学特征实现表型的预测。本发明创新性的利用图卷积神经网络结合Transformer网络实现基因到表型的预测,并利用多组学构建图结构融合多组学数据实现精准表型预测,在一定程度上解决只用单一组学表型预测不准的问题,提高了表型预测的效果。
-
公开(公告)号:CN116580773A
公开(公告)日:2023-08-11
申请号:CN202310373424.1
申请日:2023-04-10
Applicant: 之江实验室
Abstract: 本发明公开了一种基于集成学习的育种跨代表型预测方法与系统、电子设备,包括:获取高世代作物及对应后世代作物的基因型数据,采集高世代作物的目标表型数据;基于遗传算法计算评价函数,根据评价函数从基因型数据中筛选出高世代作物中与对应的后世代作物具有遗传相关的基因型数据子集;通过子集训练若干不同的机器学习模型;计算各机器学习模型的评价指标,并排序,选取前K个机器学习模型作为基础学习器;将K个基础学习器基于集成学习方法进行堆叠,训练得到元学习器;将后世代作物的基因型数据输入至基础学习器中得到元数据,再将元数据输入至元学习器中,得到后世代作物的预测目标表型数据。
-
公开(公告)号:CN118279610A
公开(公告)日:2024-07-02
申请号:CN202410704308.8
申请日:2024-06-03
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
Abstract: 本发明公开了一种基于图像表型匹配的大豆表型识别方法、电子设备、介质,包括:获取待识别的大豆图片;将其输入至预先训练好的图像编码器中提取得到图像特征,将图像特征输入至预先训练好的表型解码器中得到大豆图片获得表型结果;其中,图像编码器以及表型解码器的训练过程包括:获取大豆成熟期图像并对其设置表型标签和数组标签;将大豆成熟期图像及其对应的表型标签分别输入至图像编码器、表型编码器,从而训练图像编码器、表型编码器;固定表型编码器的网络权重;将表型标签输入至表型编码器提取得到表型特征,将表型特征输入至表型解码器提取得到表型结果识别特征,基于表型结果识别特征与数组标签间的差值从而反向传播优化表型解码器。
-
公开(公告)号:CN117079060B
公开(公告)日:2024-03-12
申请号:CN202311325300.2
申请日:2023-10-13
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V10/764 , G06V10/774 , G06V10/25 , G06V20/40 , G06V10/82 , G06N3/0442 , G06N3/0464 , G06N3/045
Abstract: 一种基于光合信号的叶片智能分类方法和系统,其方法包含:叶片光合信号提取、叶片光合信号分类。叶片光合信号提取通过叶片检测模型提取出视频中的叶片,使用分割算法对提取出的叶片进行分割,从而分割出叶片区块,然后以叶片区块内的像素均值记为当前帧的光合信号值,视频的多帧连续光合信号值即组成此叶片的光合信号。叶片光合信号分类使用神经网络对采集到的叶片光合信号进行特征提取训练,来实现叶片的分类。本发明提出一种基于植物叶片的光合信号,确定其提取方法,并针对植物叶片的光合信号变化,采用深度学习训练的方式,提取出植物叶片与其光合信号变化的相关性,从而大大提高叶片分类的精度。
-
公开(公告)号:CN117314755B
公开(公告)日:2024-02-13
申请号:CN202311605122.9
申请日:2023-11-29
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06T3/4053 , G06T3/4046 , G06T5/60 , G06T5/70 , G06T7/00 , G06V20/70 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/0475 , G06N3/0895
Abstract: 本发明公开了一种基于跨模态图像生成的多视角植株生成方法和装置,属于农业方面的图像处理领域,包括:采集植株图像并标注文本信息;基于图像和文本对文本图像映射模型进行训练微调并冻结,得到图像和文本的内嵌向量;基于图像和文本的内嵌向量,构建基于扩散模型的包含文本图像先验模块和图像编码器模块的图像生成模型并训练;实际推理阶段根据基因型‑表型预测模型得到的目标植株表型数据,引导图像生成模型生成多视角小图,并输入图像超分辨模块得到高分辨率的目标植株图像。本发明采用扩散模型构建图像生成模型和图像超分辨模块,
-
公开(公告)号:CN116992919B
公开(公告)日:2023-12-19
申请号:CN202311269915.8
申请日:2023-09-28
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06N3/042 , G06N3/0464 , G06N3/0499 , G06N3/084 , G16B40/00 , G06F18/213 , G06F18/22
Abstract: 本发明公开了一种基于多组学的植物表型预测方法和装置,该方法基于图卷积神经网络,将多组学如基因组、转录组、代谢组的数据作为图节点,不同组学之间的关联程度作为图的边来构建每个植株的图结构数据,将构建的图结构数据输入图卷积神经网络中,提取节点特征,通过Transformer网络更新节点特征,节点特征拼接后输入全连接层,输出表型预测值,利用整个图结构融合多组学特征实现表型的预测。本发明创新性的利用图卷积神经网络结合Transformer网络实现基因到表型的预测,并利用多组学构建图结构融合多组学数据实现精准表型预测,在一定程度上解决只用单一组学表型预测不准的问题,
-
-
-
-
-
-
-
-
-