一种基于图像知识回顾的深度卷积神经网络自蒸馏方法

    公开(公告)号:CN114022727B

    公开(公告)日:2024-04-26

    申请号:CN202111221950.3

    申请日:2021-10-20

    Abstract: 本发明公开了本发明公开一种基于图像知识回顾的深度卷积神经网络自蒸馏方法,该方法首先针对目标网络设置辅助网络,在目标网络的下采样层引出分支,采用知识回顾的思路依次融合和连接各个分支,在训练过程中,通过监督学习以及采用目标网络的下采样层向引出分支层进行学习的方式,达到自蒸馏的目的。本发明在深度卷积神经网络自蒸馏领域引入知识回顾的思路,提高了深度卷积神经网络的训练精度;采用辅助网络的形式进行自蒸馏,相对使用数据增强来拉进类内距离的自蒸馏方法,在实际应用中更加简洁方便。

    一种基于多Aruco码的多相机外参标定方法和系统

    公开(公告)号:CN117830422A

    公开(公告)日:2024-04-05

    申请号:CN202311729942.9

    申请日:2023-12-15

    Abstract: 本发明公开了一种基于多Aruco码的多相机外参标定方法和系统,包括以下步骤:布置多个Aruco码并拍摄多相机图像;识别每张图像中Aruco码的ID并提取每个Aruco码的二维角点坐标;根据Aruco码的二维角点坐标求得Aruco码的相对位姿;构建Aruco码位姿关系图,计算Aruco码的本地坐标系到世界坐标系的变换矩阵得到初始化的Aruco码绝对位姿;构建相机位姿关系图,计算世界坐标系到相机的相机坐标系的变换矩阵得到初始化的相机绝对位姿;通过最小化重投影误差对所有绝对位姿进行全局优化得到最优相机外参。本发明方法能够实现低人工成本、低时间成本和精准的相机外参标定,适用于多相系统外参标定场景。

    一种基于多帧输入与轨迹平滑的多目标跟踪方法和装置

    公开(公告)号:CN114998999B

    公开(公告)日:2022-12-06

    申请号:CN202210856428.0

    申请日:2022-07-21

    Abstract: 本发明公开一种基于多帧输入与轨迹平滑的多目标跟踪方法和装置,方法包括:步骤S1:获取行人视频数据集并进行行人坐标以及行人轨迹的标注,并生成片段型轨迹数据;步骤S2:构造并训练基于多帧输入与轨迹平滑的行人多目标跟踪网络模型;步骤S3:基于训练得到的行人多目标跟踪网络模型进行推理,获取当前帧行人目标检测与特征提取结果以及其前几帧的行人目标检测与特征提取结果,即获取得到多帧图像目标的坐标及外观特征;步骤S4:利用多帧图像目标的坐标及外观特征进行最短特征距离匹配,并利用轨迹曲率平滑函数进行轨迹平滑,最终得到当前帧的轨迹。本发明具有耗时低,且对同类目标的遮挡问题鲁棒性较好的优点。

    基于交叉卷积注意力对抗学习的人脸超分辨方法和装置

    公开(公告)号:CN114757832B

    公开(公告)日:2022-09-30

    申请号:CN202210663897.0

    申请日:2022-06-14

    Abstract: 本发明公开一种基于交叉卷积注意力对抗学习的人脸超分辨方法和装置,该方法将原始低分辨率图像输入人脸超分辨生成网络,经过卷积层、若干个全局残差通道注意力单元、粗上采样模块、两批局部残差通道注意力单元、精上采样模块,得到目标分辨率图像,再通过索贝尔算子获得边缘信息,通过低倍率降采样处理并反馈到主网络中进一步提高超分辨效果,利用小波变换将目标分辨率图像、真值图像和其他通过数据增强方式得到的图像进行分解,每个图像分解成一个低频信息、两个中频信息和一个高频信息,然后去掉低频信息,融合中频和高频信息,将其送到对抗网络进行判别,最后引入数据增强方法,以产生多个正负样本进行对抗网络与人脸超分辨网络的迭代优化。

Patent Agency Ranking