-
公开(公告)号:CN113705865B
公开(公告)日:2024-05-03
申请号:CN202110935648.8
申请日:2021-08-16
Applicant: 东南大学
IPC: G06N3/084 , G06N3/045 , G06N3/0499 , G06N3/06 , G06Q50/04
Abstract: 本发明公开一种基于深度神经网络的汽车稳定性因数预测方法,其特征在于包含以下步骤:采集驾驶员在不同工况下驾驶时的汽车状态参数数据,针对每种工况采集多组汽车状态参数数据,对采集的数据进行预处理,建立汽车稳定性因数估计数据库;设计多层前馈神经网络,神经网络学习算法的训练;对神经网络进行测试,验证神经网络的训练效果是否满足要求。本发明方法能够保证不同工况下汽车操纵稳定性,用于汽车控制器设计,能够保证控制器在汽车处于不同工况下,均有较好的控制效果。
-
公开(公告)号:CN111123334B
公开(公告)日:2022-10-28
申请号:CN201910664988.4
申请日:2019-07-23
Applicant: 东南大学
Abstract: 本发明涉及一种极限工况下多车协同定位平台及定位方法,定位平台包括在极限工况情况下互相协作实现车辆精准定位的通信装置、车载装置、路侧装置以及卫星组;通信装置为位于网络中的车辆提供实时信号;车载装置安装在位于网络中的车辆上,其实时接收通信装置的信息以及相邻其他车辆的位置信息;路侧装置布设在道路两侧,其为车载装置实时提供道路两侧固定物的信息;卫星组为位于网络中的车辆在优质路况上提供道路级车辆定位,为位于网络中的车辆在极限工况下提供绝对定位,同时为车载装置、路侧装置提供辅助定位;本发明在极限工况下能够实时的完成道路与环境感知准确定位,为智能网联汽车的发展与交通道路系统的改善提供了强有力的基础。
-
公开(公告)号:CN113650620B
公开(公告)日:2022-08-12
申请号:CN202111002707.2
申请日:2021-08-30
Applicant: 东南大学
Abstract: 本发明涉及一种四轮电驱动汽车状态预测方法,首先利用车载传感器获得汽车的纵向速度、横摆角速度、轮胎侧向力、前轮转角信号和纵向驱动力信息,利用无迹卡尔曼滤波算法获得基于模型的车辆状态估计;将车辆运行中产生的大数据进行提取获得状态输入和输出数据集,运用神经网络训练获得软件定义的车,使得其能够根据车辆控制输入自动输出车辆状态,获得基于数据的车辆状态估计;将获得的基于模型和数据的车辆估计加权融合,获得最终汽车状态估计值。本发明基于算法的持续优化,不断改善预测精度,促进了汽车主动安全控制技术的发展。
-
公开(公告)号:CN114043986A
公开(公告)日:2022-02-15
申请号:CN202110971842.1
申请日:2021-08-20
Applicant: 东南大学
IPC: B60W40/064
Abstract: 本发明公开了一种车载传感器测量数据异常情况下的汽车状态估计方法,具体包括以下步骤:采集车辆纵向加速度、横向加速度、横摆角速度和前轮转角信号,与非线性车辆模型结合,利用强跟踪无迹卡尔曼滤波估计车辆轴向力信息,基于车辆轴向力信息利用交互多模型无迹卡尔曼估计轮胎路面附着系数;车辆轴向力信息包括车辆前轴的纵向力和侧向力以及车辆后轴的纵向力和侧向力。通过交互与混合、预测以及融合,给出了一种可以结合多个模型的优势实现在复杂驾驶工况下轮胎路面附着系数的精确估计,然后对后验状态和它的协方差矩阵Pη更新,采用先验与后验相结合的估计方法,可以填补当前质量失配情况下汽车轴向力无法精确估计的技术空白。
-
公开(公告)号:CN111967373A
公开(公告)日:2020-11-20
申请号:CN202010818329.4
申请日:2020-08-14
Applicant: 东南大学
Abstract: 本发明公开一种基于摄像头和激光雷达的自适应强化融合实时实例分割方法,所述方法包括:利用卷积神经网络分别提取目标的摄像头图像和激光雷达投影图的图像特征,分别得到第一图像特征和第二图像特征;自适应地分配第一图像特征和第二图像特征的权重,根据分配的第一权重对第一图像特征加权得到第三图像特征,根据分配的第二权重对第二图像特征加权得到第四图像特征,对第三图像特征和第四图像特征进行强化融合;根据所述融合后的图像特征,利用实时实例分割网络输出目标的类别、置信度、边界框、掩模,获取目标的实例分割结果。本发明能够在复杂环境下实时、精确且鲁棒地实现目标实例分割,在智能网联车辆感知领域具有广泛的应用前景。
-
公开(公告)号:CN111152795A
公开(公告)日:2020-05-15
申请号:CN202010017828.3
申请日:2020-01-08
Applicant: 东南大学
Abstract: 本发明涉及一种基于模型和参数动态调整的自适应车辆状态预测系统及预测方法,工作时,通过模糊推理系统单元对鲁棒容积卡尔曼滤波单元中过程噪声参数进行动态更新,通过模型参数预测单元对鲁棒容积卡尔曼滤波单元中模型参数进行动态更新;基于车载传感器信号测量单元采集到的传感器信息和鲁棒容积卡尔曼滤波单元完成对汽车状态的高精度预测;本发明在汽车状态预测的同时模型具有动态更新能力,同时基于算法的持续自我调整,不断改善预测精度,促进了汽车主动安全控制技术的发展。
-
公开(公告)号:CN114103967A
公开(公告)日:2022-03-01
申请号:CN202110436285.3
申请日:2021-04-22
Applicant: 东南大学
Abstract: 本发明公开了一种四轮独立驱动电动汽车质心侧偏角与轮胎侧向力估计方法,包含以下步骤:根据车轮动力学方程,计算轮胎纵向力;根据车辆的纵向动力学平衡方程,基于带有遗忘因子的最小二乘法估计整车质量;建立包括车辆纵向、侧向和横摆三个自由度的四轮驱动电动汽车动力学模型和反映轮胎瞬时力学特性的半经验魔术轮胎模型的鲁棒容积卡尔曼估计模块;基于所建立的鲁棒容积卡尔曼滤波模块,估计质心侧偏角与轮胎侧向力。本发明有效提高了复杂工况下滤波对模型参数摄动以及未建模噪声的抗干扰能力,不同工况下联合估计算法的准确性、鲁棒性和抗干扰性得到提高,解决了复合工况下四驱电动汽车质心侧偏角和轮胎侧向力联合估计问题。
-
公开(公告)号:CN113008240B
公开(公告)日:2021-12-14
申请号:CN202110226179.2
申请日:2021-03-01
Applicant: 东南大学
IPC: G01C21/20
Abstract: 本发明公开了一种基于稳定域的四轮独立驱动智能电动汽车路径规划方法,包含:建立非线性七自由度非线性车辆模型,七自由度包括纵向、侧向、横摆和4个车轮;基于上述建立的非线性七自由度车辆模型,得出四轮独立驱动电动汽车的稳定域;基于上述得出的稳定域,进行路径规划。本发明提出的四轮独立驱动电动汽车路径规划方法,不仅可以满足智能电动汽车日常驾驶需求,而且在紧急避撞、高速行驶等紧急工况下,同样具有工况适应性好、路径规划准确性高、容错能力强等特点,充分发挥四轮独立驱动电动汽车相比于传统汽车或集中式电动汽车的优势,将四轮驱动电动汽车智能驾驶层和底盘控制层充分紧密的结合,提高电动汽车行驶过程中的安全性和高效性。
-
公开(公告)号:CN113705865A
公开(公告)日:2021-11-26
申请号:CN202110935648.8
申请日:2021-08-16
Applicant: 东南大学
Abstract: 本发明公开一种基于深度神经网络的汽车稳定性因数预测方法,其特征在于包含以下步骤:采集驾驶员在不同工况下驾驶时的汽车状态参数数据,针对每种工况采集多组汽车状态参数数据,对采集的数据进行预处理,建立汽车稳定性因数估计数据库;设计多层前馈神经网络,神经网络学习算法的训练;对神经网络进行测试,验证神经网络的训练效果是否满足要求。本发明方法能够保证不同工况下汽车操纵稳定性,用于汽车控制器设计,能够保证控制器在汽车处于不同工况下,均有较好的控制效果。
-
公开(公告)号:CN112026672A
公开(公告)日:2020-12-04
申请号:CN202010850348.5
申请日:2020-08-21
Applicant: 东南大学
IPC: B60R16/02 , B60R16/023 , B60L3/00
Abstract: 本发明提出一种纯电动方程式赛车整车电气系统,以主控制器为核心,基于CAN总线进行数据传输,电气系统包括驱动系统、电池及BMS管理系统、安全系统和控制及数据采集系统。驱动系统采用后轮双电机驱动;电池及BMS管理系统实时检测电池的电流、电压、温度等信号,动态制定电池管理策略,通过热管理、主动均衡管理、充电管理、放电管理等手段控制电池工作在合适工况;安全系统实时检测赛车状态,若状态异常则切断所有动力来源;控制及数据采集系统结合踏板角度传感器等信号得到赛车行驶意图,最终实现赛车的动力系统、高压电安全、硬件预警保护等控制,解决了电动赛车线束布置复杂、CAN信号抗干扰能力弱、电气系统的鲁棒性差等问题。
-
-
-
-
-
-
-
-
-