US11925121B2

Provided is a novel piezoelectric element that has a generally long linear shape and has excellent flexibility and bend resistance. The piezoelectric element includes a core wire which is a resin wire having at least one layer of metal foil helically wound therearound, an organic piezoelectric layer that coats the core wire, and a conductor layer that coats the organic piezoelectric layer. The metal foil and the conductor layer each function as an electrode having the organic piezoelectric layer interposed therebetween. The at least one layer of metal foil is helically wound around the resin wire with gaps, and the ratio of the gap to the helical pitch of the metal foil is 0.4% to 50%.
US11925118B2

A method of inactivating harmful microorganisms of a filtration medium including pathogenic bacteria and viruses is disclosed which includes placing a predetermined quantity of a hybridized fluorescent silk on to a filtration medium, applying light for a predetermined amount of time to the placed quantity of the hybridized fluorescent silk, and passing a fluid through the medium, wherein the fluid is one of substantially air or substantially water, wherein the hybridized fluorescent silk is one of KillerRed, SuperNova, KillerOrange, Dronpa, TurboGFP, mCherry, or any combination thereof.
US11925117B2

A method of disinfection of a surface of a subject of harmful microorganisms including pathogenic bacteria and viruses upon visible light irradiation using a hybridized fluorescent silk is provided. The method includes placing a predetermined quantity of the hybridized fluorescent silk i) directly on to a skin surface of a subject; or ii) on a medium and then placing the medium on the skin surface of the subject. The method further includes applying light in the visible spectrum for a predetermined amount of time to the placed quantity of hybridized fluorescent silk, wherein the hybridized fluorescent silk is one of KillerRed, SuperNova, KillerOrange, Dronpa, TurboGFP, mCherry, or any combination thereof.
US11925110B2

Disclosed is a polycyclic aromatic compound that can be employed in an organic layer of an organic electroluminescent device. Also disclosed is a highly efficient organic electroluminescent device including the polycyclic aromatic compound. The use of the polycyclic aromatic compound significantly improves the luminous efficiency of the device.
US11925109B2

A novel organic compound with favorable thermophysical properties is provided. An organic compound represented by General Formula (G1) is provided. At least one of X1 to X5 is a secondary or tertiary alkyl group having 3 to 6 carbon atoms in which a carbon atom bonded to a phenyl group branches. Each of R1 to R7 is independently any of hydrogen, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, and an unsubstituted or alkyl-substituted aryl group having 6 to 13 carbon atoms. Ar1 represents a substituted or unsubstituted condensed heteroaromatic ring skeleton having 8 to 60 carbon atoms and composed of two or more aromatic rings, and Ar2 represents a substituted or unsubstituted aryl group having 6 to 25 carbon atoms. Furthermore, n is any of 1 to 3.
US11925108B2

An object of the present invention is to provide an organic compound that has excellent properties, with excellent hole injection and transport performance, electron blocking capability, and high stability in a thin film state, and furthermore to provide a highly efficient and highly durable organic EL device by using this compound. The present invention relates to a compound having a triarylamine structure and being represented by the structural formula (A-1) below, where A, B, and C may be the same or different, and each represent a group represented by the structural formula (B-1) below, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, or a substituted or unsubstituted fused polycyclic aromatic group, where at least one of A, B, and C is not the group represented by the structural formula (B-1) below. (For the symbols and the like in the formulae, see the descriptions in the specification.)
US11925098B2

A display device includes a first transistor including a first active layer, a first gate electrode overlapping the first active layer, a gate insulating layer between the first active layer and the first gate electrode, a first source electrode, and a first drain electrode; a second transistor including a second active layer, a second gate electrode overlapping the second active layer, a second source electrode and a second drain electrode; a capacitor including a first capacitor electrode connected to the second transistor; a lower electrode disposed under the first active layer; a connecting member connecting the first active layer to the lower electrode; and a first metal pattern contacting the connecting member and disposed on a same layer with the first gate electrode.
US11925095B2

The present application discloses a display panel and a display device. The display panel includes pixel areas and transmitting areas in a first display area. The display panel further includes a light-emitting unit layer including light-emitting units, an auxiliary layer, a first electrode layer covering the light-emitting unit layer and at least part of the auxiliary layer, and a transparent auxiliary electrode layer at least covering part of the auxiliary layer and electrically connected to the first electrode layer. A thickness of the first electrode layer on the auxiliary layer is less than a thickness of the first electrode layer on the light-emitting unit layer.
US11925091B2

A light emitting display device includes a substrate including a display area and a non-display area adjacent to the display area, a lower pad electrode disposed on the substrate in the non-display area, a lower planarization layer disposed on the lower pad electrode and including a via hole exposing an upper surface of the lower pad electrode, an upper pad electrode disposed on the lower pad electrode, the upper pad electrode being electrically connected to the lower pad electrode through the via hole, and a covering layer in contact with a side surface portion of the upper pad electrode, the side surface portion of the upper pad electrode being disposed on the lower planarization layer.
US11925080B2

A display device includes a substrate including a display area and a non-display area, a plurality of pixels disposed in the display area, a common voltage supply wiring overlapping the non-display area and disposed on the substrate, a driving voltage supply wiring overlapping the non-display area and disposed on the substrate, and a data voltage supply wiring overlapping the non-display area and electrically connected to the plurality of pixels, where at least one of the common voltage supply wiring and the driving voltage supply wiring includes a chamfered area, the data voltage supply wiring includes a first data voltage supply wiring, a second data voltage supply wiring, and a third data voltage supply wiring, and the first to third data voltage supply wirings are disposed in different layers.
US11925073B2

A display device includes a display layer having a plurality of light-emitting diodes and an encapsulation layer covering a light-emitting side of the display layer. The encapsulation layer includes a plurality of first polymer projections on display layer, the plurality of first polymer projections having spaces therebetween, and a first dielectric layer conformally covering the plurality of first polymer projections and any exposed underlying surface in the spaces between the first polymer projections, the dielectric layer forming side walls along sides of the first polymer projections and defining wells in spaces between the side walls.
US11925072B2

A display apparatus includes a display panel including a first electrode, a pixel defining layer including a first opening that exposes at least a portion of the first electrode, a light emitting layer disposed on the first electrode, a display device layer including a second electrode disposed on the light emitting layer, and a thin-film encapsulation layer that overlaps the display device layer, an input sensing panel disposed on the thin-film encapsulation layer and including a sensing insulation layer and a conductive layer, and an organic insulation layer that overlaps the sensing insulation layer and includes a second opening overlapping the first opening. A side surface of the organic insulation layer defines the second opening and includes protruding side surfaces inclined in different directions from a side surface of the pixel defining layer, and the side surface of the pixel defining layer defines the first opening.
US11925069B2

A display device includes a substrate including an emission area and a non-emission area and in which a plurality of sub-pixels are defined, first electrodes disposed in the plurality of sub-pixels, respectively, a bank that is disposed in the non-emission area between the plurality of sub-pixels, and exposes the first electrode through an opening, a protrusion disposed in a second non-emission area of the non-emission area which is divided into a first non-emission area at a flat top surface of the bank and the second non-emission area at an inclined top surface of the bank, an organic layer disposed on the first electrodes, and a second electrode disposed on the organic layer.
US11925063B2

A thin-film transistor array substrate includes a substrate, a thin-film transistor disposed on the substrate, where the thin-film transistor includes a semiconductor layer including a channel area and a gate electrode overlapping the channel area, and a storage capacitor including a lower electrode disposed on the channel area and an upper electrode disposed to overlap the lower electrode, where an opening having a single closed curve-shape is defined through the upper electrode. On a plane, the upper electrode includes a first recessed portion and a second recessed portion, each exposing an edge of the lower electrode.
US11925060B2

A display apparatus includes a display panel having a first area and a second area, a main body supporting the display panel, an auxiliary member arranged in the main body, and a reflective member arranged between the auxiliary member and the display panel, wherein the reflective member may movably be provided to overlap the first area or the second area. Therefore, light emitted from the display panel toward the inside of the main body may be reflected in the outside, and a luminance difference between the first area and the second area of the display panel may be prevented from occurring, whereby a user's satisfaction for an image may be enhanced.
US11925058B2

A microcavity pixel design and structure allowing for tuning the optical cavity length of the microcavity of a microcavity pixel structure. This is achieved by including an intermediate electrode in the device which has an overhang region to form a connecting area to a bottom electrode, alleviating design restrictions in material type and dimensions throughout the optical microcavity tuning process. A method for the fabrication of a multi-colored microcavity pixel array facilitating the use of blanket deposition methods for select layers within a microcavity pixel structure.
US11925057B2

Discussed is a display device for improving both transmittance and efficiency of light that is transmitted through a light-emitting unit and a transmissive unit due to a phase difference of π at an interface between an organic layer and an optical compensation layer of the display device.
US11925054B2

A display apparatus includes: a substrate including a first area, a second area, and a third area; a display element on the substrate; a thin-film encapsulation layer covering the display element; a first dam portion at the third area, the first dam portion being adjacent to the second area; a second dam portion at the third area, and spaced from the first dam portion; and at least one groove at the third area.
US11925051B2

A display device includes: a first base having a display area; light-emitting elements on the first base; and an encapsulation layer over the light-emitting elements. The encapsulation layer includes: a first inorganic layer; an organic layer on the first inorganic layer; and a second inorganic layer on the organic layer. The first inorganic layer includes: a first buffer layer on the light-emitting elements; a first barrier layer on the first buffer layer; a first porous layer on the first barrier layer; a second barrier layer on the first porous layer; and a second buffer layer on the second barrier layer. A refractive index of the first buffer layer, the first barrier layer, and the first porous layer are different from one another, and the refractive index of the first porous layer is smaller than the refractive index of the first buffer layer and the first barrier layer.
US11925050B2

A method of manufacturing a display panel includes fabricating a display portion on a glass substrate; adhering a protection film on the glass substrate outside the display portion, and the protection film having an opening accommodating the display portion; forming an encapsulation film on the protection film and the display portion; and obtaining a panel area by removing the protection film and the encapsulation film outside a predetermined limited area on the glass substrate. The predetermined limited area corresponds to the display portion.
US11925046B2

Provided is a light-emitting device including an organic light-emitting element and a control unit that controls the organic light-emitting element. The organic light-emitting element includes a first electrode, a second electrode, and an organic light-emitting layer which is disposed between the first electrode and the second electrode and in which separation of charges occurs due to incidence of excited light. The control unit changes a potential difference between the first electrode and the second electrode so that recoupling of the charges occurs, in a second period after passage of a delay period from a first period in which the excited light is incident to the organic light-emitting layer.
US11925041B2

To provide a light-emitting element with high emission efficiency and low driving voltage. The light-emitting element includes a guest material and a host material. A LUMO level of the guest material is lower than a LUMO level of the host material. An energy difference between the LUMO level and a HOMO level of the guest material is larger than an energy difference between the LUMO level and a HOMO level of the host material. The guest material has a function of converting triplet excitation energy into light emission. An energy difference between the LUMO level of the guest material and the HOMO level of the host material is larger than or equal to energy of light emission of the guest material.
US11925038B2

A multi-junction photovoltaic device comprises a first sub-cell and a second sub-cell, the second sub-cell overlying the first sub-cell such that incident light passes through the second sub-cell before the first sub-cell. The light-receiving surface of the second sub-cell comprises a layer of a transparent conductive material and one or more metal tracks extending in a first direction and in contact with the layer of transparent conductive material. A layer of electrically insulating material is provided on the light receiving surface of the second sub-cell located under one end of the one or more metal tracks at an edge of the device, and an electrically conductive pad is provided over the layer of electrical insulator and in electrical contact with the one or more metal tracks to provide electrical contact to an external circuit.
US11925033B2

In some embodiments, the present disclosure relates to an integrated chip that includes a first and second transistors arranged over a substrate. The first transistor includes first channel structures extending between first and second source/drain regions. A first gate electrode is arranged between the first channel structures, and a first protection layer is arranged over a topmost one of the first channel structures. The second transistor includes second channel structures extending between the second source/drain region and a third source/drain region. A second gate electrode is arranged between the second channel structures, and a second protection layer is arranged over a topmost one of the second channel structures. The integrated chip further includes a first interconnect structure arranged between the substrate and the first and second channel structures, and a contact plug structure coupled to the second source/drain region and arranged above the first and second gate electrodes.
US11925029B2

A semiconductor device includes a semiconductor substrate on which a first insulation film is provided. A first conductive film is on the first insulation film. First electrode films are on the first conductive film and stacked. A charge accumulation member is between one of the first electrode films and the semiconductor member. The first conductive film includes a main body arranged below the first electrode films and an outer peripheral portion provided in an outer periphery of the main body to be apart from the main body. First and second slits are alternately provided in the outer peripheral portion, and extend along the outer periphery of the main body. The first and second slits are apart from each other as viewed in the stacking direction, and partly overlap each other as viewed in a first direction directed from the main body toward the outer peripheral portion.
US11925028B2

A semiconductor memory device, and a manufacturing method of the semiconductor memory device, includes a peripheral transistor, a first insulating layer covering the peripheral transistor, a source layer on the first insulating layer, and a stack structure on the source layer. The semiconductor memory device also includes a peripheral contact structure penetrating the stack structure and the source layer, the peripheral contact structure being electrically connected to the peripheral transistor. The stack structure includes a stepped structure including a step side surface and a step top surface. The peripheral contact structure is in contact with the step side surface.
US11925021B2

A semiconductor device, and method of manufacturing a semiconductor device, includes second conductive patterns separated from each other above a first stack structure which is penetrated by first channel structures and enclosing second channel structures coupled to the first channel structures, respectively. Each of the second conductive patterns includes electrode portions stacked in a first direction and at least one connecting portion extending in the first direction to be coupled to the electrode portions.
US11925017B2

A semiconductor device is provided. The semiconductor device includes a substrate, a stacked gate structure, and a wall structure. The stacked gate structure is on the substrate and extending along a first direction. The wall structure is on the substrate and laterally aside the stacked gate structure. The wall structure extends along the first direction and a second direction perpendicular to the first direction. The stacked gate structure is overlapped with the wall structure in the first direction and the second direction.
US11925010B2

A display panel, a display module and a manufacture method thereof, and a communication device are provided. The display panel includes a display substrate and a multiplexing circuit arranged on a first surface of the display substrate. The display panel further includes a wave-absorbing material layer arranged on a second surface of the display substrate. The wave-absorbing material layer is configured to absorb electromagnetic wave interference signals. The second surface is a surface opposite to the first surface.
US11925008B2

Disclosed is an engine driven power supply that includes a housing having a first area that includes an engine and a second area that includes a temperature sensitive component. A fan is configured to force air in multiple directions through the housing. A temperature sensor to measure a temperature. And a controller controls the fan to force air in a first direction into the first area when the temperature exceeds a first threshold temperature value, and controls the fan to force air in a second direction into the second area when the temperature is below the first threshold temperature value.
US11925006B2

A cooling system can include a two-stage compressor, a variable speed fan and a controller for continuously modulating cooling capacity of the system. The compressor can run in a loaded state and the fan can run at a first speed when a call for cooling calls for maximum system cooling capacity. The compressor can run in the loaded state and the fan speed can decrease to a second fan speed as the called for cooling capacity decreases. The compressor can run in an unloaded state and the fan speed can be increased. The compressor can run in the unloaded state and the fan speed can decrease to a third fan speed as the called for cooling capacity decreases.
US11925004B2

One feature pertains to a data storage cooling module. The data storage cooling module comprises a fan cage assembly, the fan cage assembly including a fan cage that includes at least one fan bay, at least one fan assembly removably coupled to the at least one fan bay, and an interface board removably coupled to the fan cage assembly, the interface board including a first interface surface that includes at least one power connector configured to interface with the at least one fan assembly, and a second interface surface that includes at least one drive connector configured to interface with a baseboard.
US11925001B2

An electronic cooling system is disclosed. The system includes a plurality of cooling plates to extract heat from their respective heat sources. The system further includes one or more vapor separators for extracting vapor from the liquid, with each vapor separator to receive mixed phase liquid and separate the mixed phase liquid into vapor and cooling liquid. The system further includes a return unit to receive the vapors from the vapor separators through one or more vapor loops, and dissipate the received vapors to an external cooling loop. The cooling plates include a first cooling plate that receives liquid phase cooling liquid to extract heat from a first heat source and produces first mixed phase liquid. The cooling plates further include a second cooling plate that uses cooling liquid from a vapor separator to extract heat from a second heat source, produces second mixed phase liquid, and supplies the second mixed phase liquid to the return unit.
US11925000B2

A coupling device for a fluid cooling system may have a first coupling unit having a first housing, which has a first sub-housing and a second sub-housing connectable to the first sub-housing. The first sub-housing may have a first axial passage opening connectable to a first fluid line, a first signal interface and a first end face. The second sub-housing may have a second axial passage opening connectable to a second fluid line, a second signal interface and a second end face. The first sub-housing and the second sub-housing are axially connectable to one another and the passage openings are fluidically connected to one another and the signal interfaces are connected to one another. The two sub-housings may be laterally connectable to one another, so that in the laterally coupled state, the two sub-housings are arranged parallel next to one another.
US11924997B2

A cold plate apparatus is disclosed. A cold plate includes a first set of sinusoidal conduits and a second set of sinusoidal conduits formed therein. The first set of sinusoidal conduits is arranged in a first direction, and the second set of sinusoidal conduits is arranged in a second direction. Crests of the first set of sinusoidal conduits overlap troughs of the second set of sinusoidal conduits. Crests of the second set of sinusoidal conduits overlap troughs of the first set of sinusoidal conduits. A first set of header plates is fluidically coupled to the first set of sinusoidal conduits, and a second set of header plates is fluidically coupled to the second set of sinusoidal conduits.
US11924994B2

In one embodiment, a method for managing a heatsink of an information handling system includes: determining, by a controller unit of the information handling system, that a vibration event is to occur, the vibration event associated with a vibration unit of the information handling system, the controller unit communicably coupled to the vibration unit, the vibration unit removably coupled to the heatsink; and causing, by the controller unit, the vibration unit to generate the vibration event, the vibration event causing the vibration unit to apply one or more vibrations to the heatsink, the one or more vibrations causing a boundary layer of particles to be removed from a surface of the heatsink.
US11924983B2

Systems and methods for providing an electronics module including a raceway for mounting submodules and establishing electrical communication with said submodules. The raceway comprises a base structure and a conductive trace formed by a conductive plating process. Connection pads on the raceway are configured to receive connection nodes of the submodules for providing a continuous electrical connection between the raceway and the submodules for electrical communication and power transmission.
US11924980B2

A method for manufacturing a multilayer substrate including first and second insulating resin base material layers including different materials, includes configuring a conductor film-attached insulating resin base material with a conductor film on the first insulating resin base material layer, or a second conductor film-attached insulating resin base material with a conductor film on a main surface of the first insulating resin base material layer including a main surface of a stacked body including at least the first insulating resin base material layer, and stacking the first or second conductor film-attached insulating resin base material and another base material layer such that the conductor film is in contact with the second insulating resin base material layer. An adhesion strength of the first insulating resin base material layer to the conductor film is higher than an adhesion strength of the second insulating resin base material layer to the conductor film.
US11924976B2

A work machine comprising a work head configured to hold an electrical component having multiple lead terminals; a moving device configured to move the work head in the up-down direction; an imaging device configured to image the electrical component held with work head while being illuminated from the side; and a control device configured to control the operation of the work head and the moving device; wherein the control device calculates the inclination of an electrical component held by the work head based on imaging data of lead terminals of the electrical component imaged by the imaging device while the work head is moved in the up-down direction by the moving device, so that the mounting work of the electrical component is performed by taking the calculated inclination into account.
US11924975B1

A method and apparatus for removing a daughter board from a mother board.
US11924971B2

The disclosure relates to a printed circuit board arrangement with a printed circuit board with at least two current conducting layers. The current conducting layers extend in an axial direction of the printed circuit board and are arranged in succession in a thickness direction of the printed circuit board. The printed circuit board arrangement has a busbar which is arranged on a lateral surface of the printed circuit board and is in contact with at least one part of the current conducting layers of the printed circuit board.
US11924969B2

A display device includes a display panel, a first circuit board, a control unit disposed on the first circuit board, a second circuit board, and a coupling film which electrically couples the control unit and the second circuit board to each other. The coupling film includes a first coupling part including a first region attached to the first circuit board, and a second region overlapping the display panel when viewed in a thickness direction of the display panel, a second coupling part including a third region attached to the second circuit board, and a fourth region overlapping the display panel when viewed in the thickness direction of the display panel, and a third coupling part coupled to each of the second region and the fourth region to electrically couple the first coupling part and the second coupling part to each other.
US11924959B2

An information handling system includes a PCB, a CPU, a power distribution hat, and a heat sink. The PCB includes a first power contact on a first surface of the PCB and a first ground contact on a second surface of the PCB. The CPU includes a substrate and is affixed and electrically coupled to the first surface of the PCB by a first surface of the substrate. A second surface of the substrate includes a second power contact and a second ground contact. The power distribution hat couples the first power contact with the second power contact. The heat sink couples the first ground contact with the second ground contact.
US11924955B2

An extreme ultraviolet light generation apparatus includes a target supply unit configured to output a droplet target into a chamber device, a prepulse laser light irradiation system configured to irradiate the droplet target with prepulse laser light having linear polarization to generate a diffusion target, and a main pulse laser light irradiation system configured to irradiate the diffusion target with main pulse laser light to generate extreme ultraviolet light. Here, a cross section perpendicular to an optical axis of the main pulse laser light when being radiated to the diffusion target having a shape longer in a polarization direction of the prepulse laser light when being radiated to the droplet target than in directions other than the polarization direction.
US11924949B2

The present disclosure relates to an induction heating device comprising: a heating coil provided in a main body; a knob switch, detachable from and attachable to a knob area formed on one surface of the main body, for adjusting a heating power of the heating coil by rotation when attached to the knob area; a resonance detecting unit for outputting a frequency pulse corresponding to an impedance inflection point that varies according to a degree of rotation of the knob switch; and a controller for controlling the heating power of the heating coil according to the frequency pulse.
US11924948B2

A lighting control system for controlling a cumulative light emitted by a lighting fixture may comprise a light-emitting diode (LED) driver comprising an output for conducting an output current, and a control module electrically coupled to the output of the LED driver for receiving the output current. The LED driver may regulate the magnitude of the output current towards a target current, and may be characterized by a low-end intensity. The control module may be coupled to a first LED light source of the LED light sources. The control module may receive a command including a requested intensity and control the magnitude of a first LED current through the first LED light source. The control module may control the cumulative light output of the lighting fixture below the low-end intensity of the LED driver by diverting a portion of the output current away from the first LED light source.
US11924940B2

The present application provides a lighting apparatus, including a lighting apparatus body and a control circuit built in the lighting apparatus body, where the lighting apparatus body includes a plurality of LED lamps; the control circuit includes a motor drive sub-circuit and an LED drive sub-circuit, and the LED drive sub-circuit is connected to the LED lamps, and configured to provide an LED drive signal for the LED lamps; and the motor drive sub-circuit is configured to be connected to a load motor outside the lighting apparatus body, so as to provide a motor drive signal for the load motor.
US11924933B2

A light driver includes a pulse generator circuit configured to generate a pulsed signal based on a rectified input line voltage, a dimming detection circuit configured to determine whether phase-cut dimming is present at an input of the light driver based on the pulsed signal and to generate a phase-cut detection signal, and an input selection circuit configured to apply a first voltage or a second voltage to a reference input of a power factor correction (PFC) circuit of the light driver based on the phase-cut detection signal.
US11924929B2

A ceramic heater includes a ceramic plate having a wafer placement surface, a tubular shaft having one end that is bonded to a rear surface of the ceramic plate on an opposite side to the wafer placement surface, a within-shaft region of the rear surface of the ceramic plate, an elongate hole extending from a start point in an outer peripheral portion of the within-shaft region to a terminal end position in the outer peripheral portion of the ceramic plate, and a thermocouple guide that guides a tip end of an outer-peripheral-side thermocouple to come into the start point of the elongate hole. A portion of the thermocouple guide, the portion extending from the other end (lower end) of the tubular shaft to the start point of the elongate hole, is formed in a shape following an inner wall of the tubular shaft.
US11924927B2

A method and apparatus for performing sidelink communications in a wireless transmit receive unit (WTRU) using Long Term Evolution (LTE) and New Radio (NR) technologies is described herein. A WTRU receives downlink control information (DCI) on a physical downlink control channel (PDCCH) from a gNodeB (gNB), wherein the DCI is associated with a cyclic redundancy check (CRC). The a determination is made as to whether the DCI is for an LTE or NR technology sidelink transmission. On a condition that the DCI is for NR technology, the WTRU determines which transmit modulation and coding scheme (MCS) table to apply based on the masking of at least some of the bits in the CRC. Then the WTRU transmits sidelink data on resources indicated by the DCI using the determined MCS table. The WTRU may also receive HARQ feedback on resources indicated by the DCI for HARQ feedback.
US11924926B2

Systems, methods and computer software are disclosed for 4G and 5G core interworking. In one embodiment a HetNet gateway (HNG) is disclosed. The HNG includes a virtual 4G core; a virtual 5G core; an interface to a core network; an interface to a 4G Radio Access Network (RAN); and an interface to a 5G RAN. The HNG provides interworking 4G to 5G such that a 5G RAN works with a 4G core.
US11924918B2

Systems, methods, apparatuses, and computer program products for enhancing shared data in a communications system are provided. One method may include receiving or retrieving, at a service consumer, shared data from a service producer. The shared data may include at least one treatment attribute configured to indicate a treatment of at least one attribute in the shared data with respect to at least one attribute in individual subscriber data. The method may also include applying a value provided in the at least one shared data attribute or a value provided in the at least one individual subscriber data attribute based on the at least one treatment attribute.
US11924916B2

A user equipment (UE) is configured to transmit, to a cellular carrier, a request to activate the UE with the cellular carrier. The UE is also configured to, in response to receiving an authentication request for authenticating a user of the UE, transmit, to the cellular carrier, information identifying another UE and authentication information for authenticating the user ; prompt the user, via a display of the UE, to provide, to an input system of the UE, verification information transmitted to the other UE; transmit, to the cellular carrier, the verification information; and in response to validation of the verification information by the cellular carrier, receive an embedded subscriber identity module (eSIM) subscription transferred from the other UE.
US11924912B2

A method of detecting nearby monitoring devices by a monitoring device, including using an internal real-time clock to keep track of periodic preselected times for the monitoring devices to communicate with each other; upon approaching the preselected times, using a processor and short range transceiver to perform a three stage process that enables nearby monitoring devices to take turns communicating their identity to each other.
US11924910B2

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive, from a base station, control signaling for communications in a wireless communications system. The control signaling may indicate a first duration for an inactivity timer. The UE may initiate the inactivity timer and a second timer based on identifying a period of inactivity. The second timer may have a second duration that is shorter than the first duration for the inactivity timer. In some examples, the second duration may be based on one or more parameters, such as a display status, a battery status, a scaling factor, the first duration, an application state, or any combination thereof. The UE may release a connection for the communications in the wireless communications system based on an expiration of the second timer, an expiration of the inactivity timer, or a combination thereof.
US11924903B2

Systems and methods include a computer-implemented method: A first Safety Instrumented Function (SIF) determines that a process equipment event has occurred or is predicted to occur in a first system. A first action to be performed by the first SIF is identified. In response to determining that the process equipment event has occurred or is predicted to occur, the first action is performed by the first SIF to prevent an occurrence of a first hazardous event. A determination is made by a highly-reliable, self-healing communication transmission network that a second action is to be performed in the second SIF to prevent the occurrence of a second hazardous event. In response, a notification is provided by the transmission network to the second SIF that the second action is to be performed. In response to receiving the notification by the second SIF, the second action is performed by the second SIF.
US11924901B2

A wireless communication method and apparatus for improving communication failure recovery efficiency. The method is applied to a terminal or a chip used in a terminal, and includes: upon detecting that downlink communication of the first serving cell fails, determining that downlink communication of the second serving cell is normal; sending a communication failure recovery request on an uplink channel of the second serving cell, where the communication failure recovery request is used to request to recover from a downlink communication failure of the first serving cell; and detecting a communication failure recovery response on a downlink channel of the second serving cell, where the communication failure recovery response is used to indicate a downlink communication resource of the first serving cell.
US11924899B2

Systems, methods and computer software are disclosed for providing Multipath Transmission Control Protocol (MPTCP) with mesh access. A multi Radio Access Technology (RAT) base station gateway having a MPTCP proxy, proxies an initial MPTCP connection from a User Equipment (UE). The multi-RAT base station gateway determines if the UE is capable of MPTCP to provide MPTCP. When the UE is capable of MPTCP, then the multi-Rat base station provides a Wi-Fi connection and an LTE connection. When the UE is not capable of MPTCP, then the multi-RAT base station provides an LTE connection.
US11924898B2

Some embodiments include utilizing a multilink media access control (MAC) address structure to support multilink devices (MLDs) that can operate concurrently in more than one link such as extremely high throughput (EHT) access points (APs) and EHT stations (STA), where the multilink MAC address structure is compatible with legacy devices. An EHT AP can utilize a multilink basic service set (BSS) identification (BSSID) MAC address to communicate with an EHT STA identified by a multilink MAC address. Values of the multilink BSSID and the multilink MAC address of the EHT STA are independent of which of the multiple links are used in the communication. In addition, to utilizing a multilink BSSID, the EHT AP can also support unique link-specific MAC addresses to concurrently support legacy and MLD stations. The EHT STA can also utilize unique link-specific MAC addresses that can be different than the EHT AP's link-specific MAC addresses.
US11924896B2

Aspects of the subject disclosure may include, for example, a radio device that has first and second subscriber identity modules; radio resources; a processing system including a processor; and a memory that stores executable instructions that, when executed by the processing system, facilitate performance of operations of establishing a first communications network connection associated with the first subscriber identity module; establishing a second communications network connection associated with the second subscriber identity module; determining a communications activity on the first communications network connection; pausing or suspending activities of the second communications network connection; and blocking use of the radio resources by the second communications network connection. Other embodiments are disclosed.
US11924895B2

Techniques for new radio layer two relay are disclosed. In an example, a base station may configure a user equipment (UE) and a relay UE having individual direct communication links with the base station to configure a sidelink communication link between the UE and the relay UE. The sidelink communication link may allow the UE to communicate with the base station via the direct communication link between the base station and the UE and the sidelink communication link between the UE and the relay UE.
US11924891B2

In the present disclosure, a UE transmits a random access preamble (RAP) on a physical random access channel (PRACH) and a common control channel (CCCH) service data unit (SDU) on a physical uplink channel (PUSCH). The UE receives a medium access control (MAC) protocol data unit (PDU) based on transmitting the RAP and the CCCH SDU. The MAC PDU may include a MAC PDU associated with a contention resolution identity (CRID) in the MAC PDU. The UE determines whether a MAC SDU is present or not in the MAC PDU, based on the MAC SDU indicator associated with a CRID in the MAC PDU in a state in which the CRID matches the CCCH SDU.
US11924885B2

According to an aspect of the present disclosure, a method includes receiving, by a user equipment (UE) from a first base station, on a first carrier, a synchronization sequence (SS) and performing a radio resource management (RRM) measurement in accordance with the SS. The method also includes performing cell selection and mobility support in accordance with the RRM measurement, when the UE is in idle mode and generating an RRM measurement report in accordance with the RRM measurement and transmitting, by the UE to the first base station on the first carrier, the RRM measurement report, when the UE is in connected mode.
US11924878B2

The present disclosure relates to a user equipment, a network side device, a wireless communication method and a storage medium. The user equipment of the present disclosure comprises a processing circuit, the processing circuit being configured to: generate channel occupancy time (COT) sharing indication information, wherein the COT sharing indication information comprises time frequency resources used by other user equipments when the user equipment shares a COT with the other user equipments; and send the COT sharing indication information to the other user equipments. By using the user equipment, the network side device, the wireless communication method and the storage medium of the present disclosure, COT sharing can be supported in a D2D communication mode, thereby enabling a channel to be utilized more reasonably, and simplifying a usage process of an unauthorized frequency band in D2D communication.
US11924876B2

Methods and apparatuses for handling partial sensing and discontinuous reception for sidelink communication to reduce potential latency due to additional sensing and to improve resource utilization efficiency. Various embodiments can comprise a first device performing sidelink communication to at least a second device, or a second device in a sidelink resource pool, and triggering to perform resource selection for a sidelink data at a timing, wherein the first device (already) receives or monitors sidelink control information for a (contiguous) time duration before the timing. The first device can perform sensing for a contiguous sensing duration after the timing, determine or select a first sidelink resource from a set of sidelink resources, and perform a first sidelink transmission on the first sidelink resource for transmitting the sidelink data to the second device.
US11924870B2

A data processing method, a terminal device, and a base station are disclosed. The method includes: determining to change a type of at least one radio bearer of the terminal device from a first type to a second type; discarding a radio link control protocol RLC protocol data unit and/or an RLC service data unit buffered by a transmit side of an RLC layer entity of the at least one radio bearer; and assembling an RLC protocol data unit received by a receive side of the RLC layer entity of the at least one radio bearer into an RLC service data unit, and delivering the RLC service data unit in sequence to an upper layer entity of the RLC layer entity, where the upper layer entity is an upper layer entity of the RLC layer entity before the type of the at least one radio bearer is changed.
US11924869B2

A method and a device are provided for configuring and adjusting a search space parameter. The method includes: determining whether a current state meets a preset condition; obtaining a search space configuration parameter corresponding to the current state from pre-stored multiple sets of search space configuration parameters in response to determining that the current state satisfies the preset condition; switching a search space configuration parameter of a current search space for currently monitoring search space to the search space configuration parameter corresponding to the current state; and using the search space configuration parameter corresponding to the current state to continue monitoring the search space to obtain downlink control information (DCI) sent by a base station through a physical downlink control channel (PDCCH).
US11924865B2

Disclosed are a method and an apparatus for determining a data transmission mode, and a computer storage medium. The method includes: determining, by a terminal, a small data transmission mode corresponding to service data based on a preset policy, where small data refer to data of which data amount is less than or equal to a preset value; acquiring, by the terminal, the small data transmission mode supported by the base station through a system message; and transmitting, by the terminal, the service data through the small data transmission mode; where the small data transmission mode comprises at least one of: the terminal migrates from an inactive state to a full connection state, and transmits the service data in the full connection state; or the terminal transmits the service data in the inactive state.
US11924864B2

A sidelink device can perform a network coded sidelink transmission without increasing resource overhead by using resources originally reserved for retransmission of a packet. The sidelink device can reuse the reserved resources when retransmission is not needed based on feedback of the initial sidelink transmission. In one aspect, the sidelink device can use reserved retransmission resources to transmit a network coded transmission of sidelink data received from other sidelink devices. In one aspect, the sidelink device can use the reserved retransmission resources to transmit a network coded transmission including a retransmission of the sidelink device's own sidelink data and sidelink data from other devices.
US11924860B2

System, methods, and other embodiments described herein relate to selecting servers and allocating resources concurrently for offloading computing tasks from vehicles. In one embodiment, a method includes acquiring characteristics of a vehicle and a server for an offloading request, wherein the offloading request is associated with a computing task of the vehicle. The method also includes, upon satisfying criteria for optimization associated with executing the computing task remotely, determining server selection and resource allocation by processing the characteristics using modeling. The method also includes communicating the server selection and the resource allocation to the vehicle.
US11924859B2

A user equipment (UE) having a first capability associated with a lower maximum UE bandwidth than a second capability receives information for initial access using a first initial downlink bandwidth part (BWP) that is shared among UEs having the first capability and UEs having the second capability. The UE transmits a random access message in an initial uplink BWP that is dedicated for the UEs having the first capability.
US11924853B2

The disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method and apparatus for interruption handling for V2X communication are provided.
US11924848B2

A method and a user equipment (UE) are provided for explicitly linking repeated physical downlink control channels (PDCCHs). The UE receives the repeated PDCCHs from a network. Each of the repeated PDCCHs include downlink control information (DCI) that schedules reception of a same physical downlink shared channel (PDSCH) at the UE. The UE links the repeated PDCCHs having common PDCCH candidate numbers across search space (SS) sets of a control resource set (CORESET). The repeated PDCCHs are received in accordance with the UE and the network communicating using a multi-transmission and reception point (TRP) repetition scheme or a multi-TRP multi-chance scheme.
US11924846B2

A hybrid automatic repeat request (HARQ) process method for nonterrestrial networks. In some embodiments, the method includes receiving, by a user equipment (UE), a first downlink control information (DCI), the first DCI including a first hybrid automatic repeat request (HARQ) process identifier (ID); calculating a first HARQ process number based on the first HARQ process ID and on a slot number associated with the first DCI; and processing a first data block via a HARQ process associated with the first HARQ process number.
US11924839B2

Various embodiments provide a data transmission method and apparatus. In those embodiments, a first device sends first indication information in a first frequency band, where the first indication information is indicative of a resource in a second frequency band, used by the first device and the second device to perform data transmission. In those embodiments, the first device performs, based on the scheduling information, data transmission with the second device, using the resource in the second frequency band. Those embodiments can schedule a device based on a plurality of frequency bands to perform data transmission. In this way, a larger bandwidth is used, a throughput rate is increased, and system performance is improved.
US11924833B2

The present disclosure provides a transmission feedback method and a UE. The transmission feedback method includes: transmitting a time-frequency transmission resource for transmitting feedback information for unicasting or multicasting transmission to at least one target UE which has established a connection with a source UE; acquiring the feedback information transmitted on the time-frequency transmission resource from the target UE; and determining a unicasting or multicasting transmission state in accordance with the feedback information.
US11924832B2

Systems, methods, and circuitries are provided for performing sidelink communication. An example method generates SCI stage 1 and stage 2 for transmitting a transport block (TB) to a user equipment device (UE). The method includes determining the type of sidelink communication for transmitting the TB. An SCI stage 2 format is selected based on the type of sidelink communication. An SCI stage 2 payload is encoded in accordance with the selected SCI stage 2 format. The selected SCI stage 2 format value is encoded in an SCI stage 1 payload. The SCI stage 1 payload and SCI stage 2 payload are transmitted to the UE.
US11924831B2

A user equipment includes a control unit that controls transmission or reception of a sidelink signal in which a first resource and a second resource are multiplexed in a same slot, wherein at least one of SLSS (Sidelink synchronization signal) or PSBCH (Physical Sidelink Broadcast Channel) is allocated in the first resource, and at least one of PSCCH (Physical Sidelink Control Channel), PSSCH (Physical Sidelink Shared Channel), and PSDCH (Physical Sidelink Discovery Channel) is allocated in the second resource; a reception unit that monitors the first resource, the second resource, or the first resource and the second resource; and a transmission unit that performs transmission using any one of the first resource, the second resource, and the first resource and the second resource.
US11924826B2

Certain aspects relate to methods and apparatus for a flexible transmission unit and acknowledgement feedback timeline for low-latency communication. As described herein, a UE may receive, within a subframe a first portion of a downlink control region scheduling at least a first data unit, wherein the subframe comprises at least two TTIs and wherein the subframe comprises the downlink control region, a data region, and an uplink control region, receive the first data unit in a first TTI of the data region, receive a second data unit in a second TTI of the data region, and separately acknowledge receipt of the first and second data units. According to aspects, the acknowledgment for the first data unit may occur in the same subframe as the transmission of the first data unit. A BS may perform corresponding operations.
US11924820B2

A communication system includes multiple nodes of a time-sensitive network and a scheduler device. At least one of the nodes is configured to obtain a first signal that is represented in a frequency domain by multiple frequency components. The scheduler device generates a schedule for transmission of signals including the first signal within the time-sensitive network. The schedule defines multiple slots assigned to different discrete frequency sub-bands within a frequency band. The slots have designated transmission intervals. The nodes are configured to transmit the first signal through the time-sensitive network to a listening device such that the first signal is received at the listening device within a designated time window according to the schedule. At least some of the frequency components of the first signal are transmitted through the time-sensitive network within different slots of the schedule based on the frequency sub-bands assigned to the slots.
US11924818B2

This disclosure provides methods, devices and systems for encoding data for wireless communication to achieve a desired amplitude distribution. Some implementations more specifically relate to performing an encoding operation to shape the amplitudes of the resultant symbols such that the amplitudes have a non-uniform distribution. In some implementations of the non-uniform distribution, the probabilities associated with the respective amplitudes generally increase with decreasing amplitude. Some implementations enable the tracking of MPDU boundaries to facilitate successful decoding by a receiving device. Additionally or alternatively, some implementations enable the determination of a packet length after performing the amplitude shaping, which enables a transmitting device to determine the number of padding bits to add to the payload and to signal the packet length to a receiving device so that the receiving device may determine the duration of the packet.
US11924813B2

A wireless transmit/receive unit (WTRU) may receive a first physical downlink shared channel (PDSCH) signal including a system information block (SIB) with a first time division duplex (TDD) uplink (UL)/downlink (DL) configuration. Also, the WTRU may receive a physical downlink control channel (PDCCH) signal including downlink control information (DCI). In addition, the DCI may indicate an uplink grant. Further, the WTRU may transmit a physical uplink shared channel (PUSCH) transmission based on the uplink grant. Also, the WTRU may transmit at least one PUSCH repetition transmission based on the uplink grant. The at least one PUSCH repetition transmission may be transmitted in at least one time interval that is non-overlapping with a downlink time interval indicated by the first TDD UL/DL configuration. In an example, the SIB may be a SIB Type 1 (SIB-1) or a SIB Type 2 (SIB-2).
US11924811B2

A system generates, by a first source microcontroller, a first data packet comprising a payload and a first error code, the payload indicating a safety state of a robot. The first source microcontroller transmits the data packet from the first source microcontroller to a second source microcontroller. The second source microcontroller generates a second data packet that includes the payload, the first error code and a second error code. The second source microcontroller transmits the second data packet to a sink microcontroller, wherein the sink microcontroller recovers the payload based on at least one of the first error code and the second error code.
US11924809B2

The present disclosure provides a method and a device for wireless communication in a User Equipment and a base station. In one embodiment, a first node receives a first signal set in a first radio resource pool by blind detection, and recovers a first bit block on a physical layer according to the first signal set; delivers first buffer information from the physical layer to a higher layer; when fulling a first condition set, triggers first information to the higher layer; after triggering of the first information on the higher layer, transmits a first radio signal, the first radio signal comprising the first information; herein, the first information is used to indicate data size contained in buffer that can be transmitted, the first condition set comprises a first condition. The present disclosure improves transmission efficiency and spectrum utilization, and effectively prevents buffer overflow.
US11924803B2

Provided are methods and devices for performing positioning in a next-generation wireless network. The method of a UE for performing positioning include identifying configuration information for a transmission bandwidth of a positioning reference signal (PRS) configured per cell and receiving the positioning reference signal corresponding to each cell based on the configuration information for the transmission bandwidth.
US11924787B2

An electronic device includes a housing, at least one antenna array disposed in the housing or formed on a part of the housing and including a plurality of antenna elements, a processor electrically or operatively connected to the antenna array, and a memory operatively connected to the at least one processor. In addition to the above, various embodiments identified through the specification are possible.
US11924784B2

Aspects of the disclosure relate to aperiodic transmission of one or more instances of at least one synchronization signal to a user equipment (UE). For example, the base station may allocate a plurality of time resources for aperiodic transmission of one or more instances of at least one synchronization signal different from a synchronization signal block transmitted by the base station. The base station may further transmit the aperiodic transmission of the one or more instances of the at least one synchronization signal to at least one UE using the plurality of time resources.
US11924781B2

A method for controlling transmission power from one or more radio units is provided including monitoring channel state feedback for a signal communicated between a first radio unit of the one or more radio units and a user device in a transmitted frequency range, wherein the channel state feedback is based at least in part on a metric of quality of the communicated radiofrequency signal, determining that the channel state feedback satisfies a channel state condition, wherein the channel state condition includes a metric to evaluate performance of the one or more radio units relative to the user device based at least on the metric of quality of the communicated signal, and transmitting an instruction to adjust a transmission power in the transmitted frequency range of at least one of the one or more radio units based at least on the satisfaction of the channel state condition.
US11924777B2

Dynamically limiting uplink transmit power of wireless devices that are known to be within range of a dense cluster or quantity of access nodes. Wireless devices can report identifiers of nearby access nodes. Responsive to determining a large quantity of identifiers from a wireless device in a specific location, the maximum allowable transmit power of the wireless device (or other wireless devices in the same area) can be reduced. Power can be reduced for HPUEs as well as LPUEs.
US11924768B2

The application provides a data sending method and a communication apparatus to avoid signaling overheads caused by scheduling by a network device, and a terminal device can flexibly select a quantity of repeated transmissions based on an actual situation, so that data transmission performance is improved. The network device sends configuration information of a receive power to the terminal device. After receiving the configuration information of the receive power, the terminal device determines a quantity of repeated transmissions of target data based on the configuration information of the receive power. After determining the quantity of repeated transmissions of the target data, the terminal device sends the target data to the network device based on the quantity of repeated transmissions of the target data.
US11924765B2

Methods and apparatus are described. A long term evolution-advanced (LTE-A) wireless transmit/receive unit (WTRU) includes a transceiver and a processor. The transceiver receives discontinuous reception (DRX) configuration information. The processor, in response to the received DRX information, controls the transceiver to monitor LTE-A physical downlink control channels (PDCCHs) in subframes in a first frequency band during an active time. The processor further, in response to detecting a downlink assignment in an LTE-A PDCCH in the first frequency band during the active time, wherein the downlink assignment indicates a second frequency band and assigned subcarriers within the second frequency band, to receive an LTE-A physical downlink shared channel (PDSCH) K subframes after a transmission of the downlink assignment. The second frequency band is different than the first frequency band.
US11924762B2

An information sending method, an information receiving method, a network device and a terminal are disclosed. The method includes: sending, by the network device, indication information used for indicating transmission information of the power-saving reference signal (PSRS); and sending, by the network device, the PSRS according to the transmission information of the PSRS.
US11924755B2

Method, apparatus, and computer program product for a user equipment in a wireless communications system to receive configuration information that has one or more TCI-states. With this configuration information, the user equipment can then determine inactivity on TCI-states. Based on that determination, the user equipment enables either a discontinuous monitoring or a cessation of monitoring on those TCI-states. Each TCI-state corresponds to a radio beam and also corresponds to an antenna panel. By reducing such monitoring, the use equipment can deactivate antenna panels corresponding to the TCI-states. The determination can be done through the use of a timer with various time thresholds based on the TCI-state. The activity being transmitted on those beam can be scheduling received by the user equipment from a network element such as a base station. The TCI-states can also be grouped and the functionality of the invention dealt with on a group basis.
US11924752B2

An approach to automatically provision a data service name (APN or DNN) when an endpoint device connects to a mobile network is described. A methodology includes receiving from an endpoint device a first request to connect to a mobile network, the first request including an identifier of the endpoint device and a default data service name, responsive to detecting the default data service name, determining, from the identifier of the endpoint device, a group to which the endpoint device belongs along with a corresponding group identifier for the group, querying a repository with the group identifier, and receiving, in response, an assigned data service name that is associated with the group identifier, providing the assigned data service name to the endpoint device, and receiving from the endpoint device a second request to connect to the mobile network, the second request including the assigned data service name.
US11924744B2

The present application provides an access control barring method and device. The method is applied to a terminal, and the method includes: determining a designated call type barring for an access control barring; and performing the access control barring based on the designated call type barring.
US11924743B2

Systems/Methods of establishing and using a capability at a smartphone to conduct financial transactions are disclosed. According to some embodiments, responsive to sensing a value of a parameter and responsive to determining that the value of the parameter sensed satisfies a criterion, a master-slave relationship is selectively established with a device and an authorization to establish said capability is selectively requested from the device. Responsive to receiving the authorization, the capability to conduct financial transactions by the smartphone is established. Then, provided the smartphone is proximate to an access point maintained by a vendor and provided that the value of the parameter is sensed and satisfies the criterion, said capability that has been established may be used to conduct a financial transaction and pay for a product.
US11924739B2

Methods, systems, and devices for wireless communications are described. During an operation for discovering reconfigurable surfaces, a sensing signal may be transmitted. Based on the sensing signal being transmitted, another signal may be detected at the device that transmitted the sensing signal, another device, or both. The device that detects the signal may combine the detected signal with a modulation sequence that is associated with a reconfigurable surface, where the reconfigurable surface may be assigned a set of unique modulation sequences and configured to apply a modulation sequence to received signals. Based on combining the detected signal with the modulation sequence, the device may determine whether the reconfigurable surface is present within a geographic region.
US11924737B2

Provided is a method for performing relay forwarding on integrated access and backhaul (IAB) links. The method includes receiving, by a first IAB node, a data packet; and transmitting, by the first IAB node, the data packet to an IAB donor. Further provided are an information acquisition method, an IAB node, an IAB donor node and a storage medium.
US11924728B2

A method for an aerosol delivery device, may include storing, during use of the aerosol delivery device and in a memory of the aerosol delivery device, information recording usage characteristics of the aerosol delivery device. The method may further comprise creating, using a wireless communication interface of the aerosol delivery device, a connectionless-state advertising packet that includes information relating to an identity and advertising state of the aerosol delivery device and a first set of information recording usage characteristics of the aerosol delivery device from the memory; and transmitting the advertising packet via the wireless communication interface. The method may further comprise receiving a connectionless-state request packet from a remote wireless device, via the wireless communication interface; and responsive to receiving the request packet, creating, using the wireless communication interface, a connectionless state response packet that that includes a second set of information recording usage characteristics of the aerosol delivery device from the memory.
US11924712B2

An information processing apparatus includes a controller configured to generate a message notifying a healthcare professional of information on a call concerning a patient, and associate, when the healthcare professional takes out an AED while going to the patient based on the message, the call with information on an installation location from which the AED is taken out.
US11924709B2

The invention to provides an improved controller for providing a location-based service to an area, wherein the controller comprises a memory and a transceiver, wherein the controller is configured to: obtain a location of a mobile device associated with a person; obtain sensor data from at least one sensor arranged for monitoring the person in the area when the obtained location of the mobile device is within the area; store the sensor data in the memory; forward, via the transceiver, the stored sensor data to the mobile device when the obtained location of the mobile device is no longer within the area, and subsequently delete the sensor data from the memory. The invention further provides related systems for providing a location-based service to an area and related methods.
US11924705B2

An antenna device, a positioning system and a positioning method are provided. The positioning method includes: dispersedly arranging a plurality of receivers to form a target area, in which each of the receivers includes the antenna device; receiving a wireless signal from the target area through the antenna device, and generating a difference signal strength and a sum signal strength; calculating, for each of the receivers, a sum-difference ratio between the difference signal strength and the sum signal strength, and estimating a corresponding one of estimated incident angles according to the sum-difference ratio and a comparison table; executing, in response to obtaining the estimated incident angles corresponding to the receivers, a positioning algorithm according to the estimated incident angles, so as to generate a plurality of possible positions; and executing an optimization algorithm to calculate a best estimated position of the possible positions.
US11924703B2

There is provided a network comprising antenna circuitry to receive incoming signals and transmit outgoing signals. Remote modem circuitry, connected to the antenna circuitry by analog cabling, demodulates a first incoming signal of the incoming signals to produce first incoming data and control circuitry, remote from the remote modem circuitry and connected to the remote modem circuitry via digital cabling, controls a behaviour of the remote modem circuitry and receives the first incoming data from the remote modem circuitry.
US11924695B2

A mobile telecommunications system method is described. A property of a first received reference signal from a first base station operating in a first mobile telecommunications system and a property of a second received reference signal from a second base station or a user equipment operating in a second mobile telecommunications system are measured. It is switched from the first base station to the second base station as a serving base station based on the property of the first received reference signal and on the property of the second received reference signal.
US11924692B2

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may transmit a reservation for a sidelink resource for a communication by the UE, wherein the sidelink resource was previously reserved by a transmitter UE for a communication by the transmitter UE; and receive an indication that the sidelink resource is reserved and that the UE is not permitted to reserve the sidelink resource. Numerous other aspects are provided.
US11924691B2

The present disclosure provides a method for improving call performance in a wireless network. The method includes sending an invite request to a server to initiate a Voice over New Radio (VoNR) service, where the UE is connected with a first network entity, and where the invite request comprises a media feature tag. The method includes initiating an Evolved Packet System fallback (EPS FB) service timer based on the media feature tag and a quality of service (QoS) timer and establishing a call over a second network entity using a dedicated bearer when the EPS FB command is received from the server. The call is established over the second network entity using the dedicated bearer by sending a service request to the server and/or sending an update request to the server when the EPS FB timer is expired and the EPS FB command is not received from the server.
US11924690B2

A method for managing telecommunications resources dynamically allocated to a plurality of telecommunications operators is disclosed. At least one module for centralized management of the resources carries out: receiving a request for resources emitted by a requesting module representing one of the plurality of telecommunications operators, referred to as a requesting operator, to the at least one module for centralized management of the resources; and sending, to the requesting module and in response to the request, at least one offer of resources. The at least one offer of resources comprises: a piece of common objective information, representing a resource management objective common to the plurality of telecommunications operators; and/or at least one piece of reliability information from at least one other of the plurality of telecommunications operators, referred to as an offering operator, proposing the at least one offer of resources.
US11924681B2

A mechanism for adaptively performing in-band network telemetry (INT) by a network controller is disclosed. The mechanism includes receiving one or more congestion indicators from a collector. An adjusted sampling rate is generated. The adjusted sampling rate is a specified rate of insertion of instruction headers for INT and is generated based on the congestion indicators. The adjusted sampling rate is transmitted to a head node, which is configured to perform INT via instruction header insertion into user packets.
US11924680B2

Methods, apparatuses and systems for user-plane congestion management are provided. Among these method, apparatuses and systems is a method, implementable by a base station (and/or a serving gateway), for mitigating user plane congestion. The method may include sending a congestion indication to a core network; receiving a general packet radio system (GPRS) tunneling protocol (GTP) packet including an first internet protocol (IP) packet associated with a first flow within a bearer; obtaining, from a header of the GTP packet, an indicator indicative of a priority of the IP packet, wherein the indicator was inserted into the header of the GTP packet by the core network responsive to the congestion indication; and dropping any of the GTP packet and the first IP packet on condition that a priority of a second IP packet associated with second flow within the bearer takes precedence over the priority of the first IP packet.
US11924679B2

A RAN node includes means for receiving a N2 message containing a list of S-NSSAI of the congested network slice from an AMF and means for sending the list of S-NSSAI and a wait timer for each S-NSSAI in the list in first AN signaling message to an UE when receiving, from the UE, second signaling message containing the list of S-NSSAI to establish an AN signaling connection, the S-NSSAI being indicated in the N2 message as congested by the AMF.
US11924674B2

This application provides a data transmission method and apparatus. The method includes: obtaining, by a terminal, information used to indicate a first condition; obtaining to-be-transmitted data; and when the first condition is met, sending, by the terminal over a sidelink, the to-be-transmitted data that is on a first logical channel by using a first carrier frequency and the to-be-transmitted data that is on a second logical channel by using a second carrier frequency. In this method, the same data is sent, over the sidelink, on different carrier frequencies by using two logical channels, and a receiving device can receive the same duplicate data, thereby improving data transmission reliability.
US11924673B2

A method performed by a base station in a wireless communication system is provided. The method includes transmitting, by a control plane (CP) of a centralized unit (CU) of the base station, a bearer context modification request message to a user plane (UP) of the CU of the base station, wherein the bearer context modification request message includes information associated with a request for a packet data convergence protocol (PDCP) sequence number (SN) status, and transmitting, by the UP of the CU of the base station, based on the bearer context modification request message, a bearer context modification response message to the CP of the CU of the base station, wherein the bearer context modification response message includes information associated with the PDCP SN status and information associated with at least one QoS flow, of which a service data adaptation protocol (SDAP) end marker is not received by the UP of the CU.
US11924671B2

A method for managing resources of a converged fixed access and mobile radio telecommunications network, some of the resources being implemented in a virtualized and remote form in the network, optical resources of the network being allocated between an optical router and a plurality of optical modems of the network is disclosed. A module for centralized management of the mobile radio resources of the network implements receiving a performance indicator for a mobile radio part of the network transmitted by a base station of the network connected to one of the optical modems and/or by a module of remote virtualized radio functions in the network; estimating the optical resource requirements of the mobile radio part from the performance indicator, providing information representative of the optical resource requirements; and transmitting the information of the optical resource requirements to a module for centralized management of the fixed access and optical resources.
US11924662B2

Aspects of the subject disclosure may include, for example, a method that includes providing, by a processing system including a processor, a controller function for a user plane function (UPF) of a communication network; the controller function facilitates automated procedures for authentication, deployment, configuration, testing, and/or controlling availability of the UPF, independent of a source of the UPF. The method also includes providing, by the processing system, an interface to facilitate communication between the controller function and the UPF; the controller function uses the interface to facilitate the procedures. Other embodiments are disclosed.
US11924652B2

A control device of a mobile object is configured to execute a function using communication. The control device includes an acquisition unit configured to acquire communication quality on a planned movement route of the mobile object, and a determination unit configured to determine, based on the acquired communication quality, whether or not the planned movement route includes a position that does not satisfy communication quality required for execution of the function.
US11924649B2

This document generally relates to use of intelligent reflecting devices in wireless communication systems, which may increase the coverage for a wireless access node or base station. An intelligent reflecting device may configure its surface with a degree of reflection according to a reflection scheme, and in turn, the surface may reflect an incident signal according to the reflection scheme. As a result, the reflected signal may have one or more characteristics that indicate to a receiving device that the received signal was reflected by an intelligent reflecting device, and/or one or more characteristics of the intelligent reflecting device.
US11924645B2

Described herein are techniques to ensure a user using an external device is authorized to connect and connecting to a correct implantable medical device using a wireless communication protocol. A request for authorization is sent to the external device from the implantable medical device, and the authorization can be provided by an authorization pulse sent using the implantable medical device charger over the inductive link between the charging device and the implanted device. The authorization pulse can be trusted because the inductive link is short range, ensuring the patient is aware of the connection to the implanted device. Once the implanted device receives the authorization pulse, it may finalize the pairing over the first connection.
US11924640B1

Techniques for establishing a data connection are described. In an example, a computer system receives, from a second device of a computer network, first data associated with a first device and second data associated with the second device. The first device is not connected to the computer network. The computer system determines third data generated by one or more devices other than the first device and the second device and associated with at least one of: the first device, the second device, a user account, or the computer network. The computer system generates, based on the first data, the second data, and the third data, a confidence score indicating a likelihood of a user authorization to connect the first device to the computer network. The computer system sends, to the second device based on the confidence score, instructions associated with connecting the first device to the computer network.
US11924636B2

Aspects of the present disclosure involve systems, methods, devices, and the like for user authentication. In one embodiment, the user authentication occurs using a multi-provider platform. The multi-provider platform enables the use and retrieval of user information from the given provider for the use and assessment of information associated with the user. User information may also be received over a web link communicated at least in part by a risk checkpoint component to a user device, wherein the user information received and that retrieved may be jointly used for determining user authentication.
US11924634B2

Methods of operating a user equipment (UE) in a mobile communication network are disclosed. An authentication process start message may be transmitted from the UE to the mobile communication network, wherein the authentication process start message includes an identifier for the UE. After transmitting the authentication process start message from the UE, a request commit message may be received from the mobile communication network. Responsive to receiving the request commit message, a response commit message may be transmitted to the mobile communication network. After transmitting the response commit message, an authentication challenge message may be received corresponding to the authentication process start message. Related methods of operating network nodes are also discussed.
US11924626B2

Disclosed are a sound tracing apparatus and a sound tracing method, and the sound tracing apparatus includes a first acceleration structure generation unit configured to generate a first acceleration structure for a static scene in a sound space, an intersection test execution unit configured to perform an intersection test on each of a plurality of dynamic objects constituting a dynamic scene in the sound space to detect whether or not the dynamic object affects a sound propagation path, a second acceleration structure generation unit configured to select the dynamic objects that affect the sound propagation path as a result of the intersection test and then generate the second acceleration structure for the dynamic scene, and a sound generation unit configured to generate a 3D sound by performing sound tracing based on the first and second acceleration structures.
US11924623B2

A 3D sound spatializer provides delay-compensated HRTF interpolation techniques and efficient cross-fading between current and delayed HRTF filter results to mitigate artifacts caused by interpolation between HRTF filters and the use of time-varying HRTF filters.
US11924616B2

A hearing device includes: a processing unit configured to compensate for hearing loss of a user of the hearing device; and a memory unit; wherein the processing unit is configured to: obtain an access right certificate, the access right certificate comprising an access right identifier, verify the access right certificate, and if the access right certificate is verified, provide an access right according to the access right identifier.
US11924615B2

A hearing aid has a housing and an antenna. The housing has a housing shell to be worn in the ear. The antenna is designed for signal transmission via a radio connection. The housing shell has an inner side. The antenna is inserted into the housing shell and extends along the inner side. There is also described a corresponding antenna and a method for producing a corresponding hearing aid.
US11924597B2

An electronic device is provided. The electronic device includes a housing, a flexible display configured to move relative to at least a portion of the housing, and at least one noise detection circuitry disposed in the housing. The at least one noise detection circuitry may include a substrate, a microphone circuitry disposed on the substrate, a vibration detection sensor disposed on the substrate, a shielding member disposed on the substrate and surrounding at least a portion of the vibration detection sensor, and a waterproofing member disposed on the shielding member and covering the vibration detection sensor.
US11924591B2

A fiber port management system that can be connected between network devices and network appliances is provided. The fiber port management system includes a housing, one or more hydra cables within the housing, one or more indicators and a controller. The housing has a front panel with a plurality of low density fiber connectors and a rear panel with a plurality of high density fiber connectors. The hydra cable is positioned within the housing and connects one of the plurality of high density fiber connectors to two or more of the plurality of low density fiber connectors. The one or more indicators are associated with each of the plurality of low density fiber connectors and each of the plurality of high density fiber connectors. The controller is located within the housing and is used to control the operation of the indicators.
US11924589B2

Color filters are used for color images obtained using imaging devices such as conventional image sensors. Imaging elements with color filters are sold, and an appropriate combination of the imaging element and a lens or the like is incorporated in an electronic device. Only providing a color filter to overlap a light-receiving region of an image sensor reduces the amount of light reaching the light-receiving region. An imaging system of the present invention includes a solid-state imaging element without a color filter, a storage device, and a learning device. As a selection standard for reducing the amount of learning data, in an HSV color space, saturation is used, and selection is performed so that the saturation has optimal distribution. When colorization disclosed in this specification is performed, the colorization and object highlight processing can be performed at the same time.
US11924561B2

Systems, apparatus, and methods of rendering content based on a control point of a camera device are disclosed. In an example, a marker is attached to the camera device and its pose is tracked over time. Based on a camera model of the camera device, an offset between the marker and the control point is determined. The tracked pose of the marker can be translated and/or rotated according to the offset to estimate a pose of the control point. The rendering of the content is adjusted over time based on the estimated poses of the control point. Upon presentation of the content in a real-world space (e.g., on a display assembly located therein), the camera device can capture the content along with other objects of the real-world space and generate a video stream thereof.
US11924558B2

An image pickup apparatus, a control method thereof, and a storage medium, the image pickup apparatus being capable of shooting a plurality of still images under an appropriate exposure condition when the image pickup apparatus including a camera system performs alignment composition of the still images shot in a time continuous manner. An exposure time for each of the still images and a total number of the still images are set based on the focal length information, the optical image blur correction angle information, and the response characteristic information.
US11924554B2

An imaging system (100) includes an imaging unit (140) configured to capture an image of a target object while the imaging unit (140) being mounted on a movable apparatus (500); and an exposure condition determination unit (161) configured to determine any one of a fixed exposure condition and an automatic exposure (AE) condition, as an exposure condition, based on a distance detected between the movable apparatus (500) and the target object.
US11924548B2

An apparatus comprising a sensor capable of generating a signal pair used in focus detection. The apparatus obtains, based on a defocus amount obtained using the signal pair, a focus distance of a lens unit that is mounted to the apparatus and adjusts a focus distance of the lens unit based on the obtained focus distance. When the lens unit is a multi-scopic lens unit having a plurality of optical systems having different axes, the apparatus obtains the focus distance using an adjustment value obtained based on an axis position that is a position on the sensor through which an axis of the multi-scopic lens unit passes.
US11924541B2

Systems, methods, devices and non-transitory, computer-readable storage mediums are disclosed for a wearable multimedia device and cloud computing platform with an application ecosystem for processing data captured by the wearable multimedia device. In an embodiment, operations performed by the wearable multimedia device or cloud computing platform include accessing information from one or more data streams, where the one or more data streams include at least one of image data or preset image parameters; determining, using the information from the one or more data streams, exposure parameters for capturing one or more images; applying the determined exposure parameters to a camera; and controlling the camera to capture one or more images with an exposure set according to the applied exposure parameters.
US11924538B2

The embodiment is a target tracking method. The method is applicable to a UAV including a visible light camera and an infrared camera, and includes: controlling the visible light camera to perform visual tracking on a target object, and recording first tracking information of the target object in real time; controlling the infrared camera to perform infrared tracking on the target object, and recording second tracking information of the target object in real time; controlling, in a case of determining that the target object is lost in the visible light camera, the visible light camera to re-lock the target object according to the second tracking information and continue to perform visual tracking; or controlling, in a case of determining that the target object is lost in the infrared camera, the infrared camera to re-lock the target object according to the first tracking information and continue to perform infrared tracking.
US11924524B2

Systems and methods are described for securely distributing metadata using a block chain. The system generates a block for a distributed blockchain ledger such that the block includes an encrypted metadata item of a media asset. The system, at a first time, transmits the block for storage in the distributed blockchain ledger such that a copy of the distributed blockchain ledger is stored by the first computing device and a second computing device. The system generates a smart contract that includes a decryption key for the encrypted metadata item and an identifier of the second computing device. The system transmits the smart contract for storage in the distributed blockchain ledger. The smart contract is configured to be automatically executed at the execution time that is later than the first time, to provide the second computing device with the decryption key for the encrypted metadata item.
US11924522B2

A content delivery server is configured to receive a request for a chunk of a segment of a video stream, the segment of the video stream including a series of chunks, each of the chunks including a set of video frames, a first of the chunks being aligned with a first Instantaneous Decoder Refresh frame in the video stream, and a second of the chunks being aligned with a second subsequent Instantaneous Decoder Refresh frame in the video stream; determine whether the request was received during a first interval or a second subsequent interval of an intra period between the first of the chunks and the second of the chunks; and output the first of the chunks or the second of the chunks for transmission based on the determination of whether the request was received during the first interval or the second interval.
US11924518B2

Methods and systems for a media guidance application that aggregates media content and media guidance data for users. For example, the media guidance application may aggregate content from numerous providers and provide the content through a single interface. Moreover, the media guidance application described herein may provide service providers with finder's fees for sharing information about media assets that users are interested in viewing.
US11924517B2

Systems and methods for generating a channel sequence for display via an abbreviated on-screen guide are disclosed herein. Channel tuning commands are entered via a user interface of a computing device. Channel tuning data, which describes channel transitions caused by the channel tuning commands, is stored in a buffer. Based on the channel tuning data, a channel family comprising a plurality of channels is generated. A determination is made as to whether a currently tuned channel is included in the channel family. In response to determining that the currently tuned channel is included in the channel family, an on-screen guide, which comprises an abbreviated channel listing of the plurality of channels of the channel family, is generated for display.
US11924515B2

The present disclosure provides a display device for providing a function of searching for a product, a person, a place, or music appearing in a video, and an operation method therefor. The display device includes a display configured to display video, a user input interface configured to receive a search command, a controller configured to obtain video scene information at a time point when the search command is received, and a network interface configured to receive information about a product included in the video scene at a time point when the search command is received, based on the video scene information, wherein the display is configured to display a search result screen including a product icon representing the product.
US11924513B2

Disclosed are a display apparatus and a method for displaying a user interface. In response to a preset instruction, the display apparatus acquires local images to generate a local video stream, plays a local video picture, and displays a graphic element for identifying a preset expected position in a floating layer above the local video picture. When the moving target exists in the local video picture and an offset of a target position of the moving target in the local video picture relative to the expected position is greater than a preset threshold value, a prompt control for guiding the moving target to move to the expected position is presented in the floating layer above the local video picture according to the offset of the target position relative to the expected position.
US11924510B2

Systems, methods, and devices relating to determining viewership data are described herein. In a method, viewing data associated with a household is received. A first portion of the viewing data is indicative of video programming associated with a first video device and a second portion of the viewing data is indicative of video programming associated with a second video device. One or more characteristics associated with the first and second portions of the viewing data are determined. Based on the one or more characteristics and a comparison of the respective video programming associated with the first and second video devices, it is determined that the first portion of the viewing data is duplicative, at least in part, with the second portion of the viewing data.
US11924508B2

Methods and apparatus to measure audience composition and recruit audience measurement panelists are disclosed. An example media device disclosed herein includes processor circuitry to execute instructions to: detect a first code embedded in a video stream of media presented by the media device, the first code to reference first audience measurement data to identify the media; after detection of the first code, provide a prompt to request input of second audience measurement data; and cause transmission of at least one of the first audience measurement data or the second audience measurement data to a remote data processing facility.
US11924487B2

Example methods, apparatus, systems and articles of manufacture to determine synthetic total audience ratings are disclosed. Disclosed example apparatus are to access census data including census viewing statements associated with media content presented by census devices, access panel data including panelist viewing statements associated with media content presented by panel devices, the panel data including weights to represent numbers of individuals to be represented by corresponding panelists, determine scores representing similarities between ones of a first group of census devices determined to having matching panel devices in the panel data and ones of a second group of census devices determined to be unmatched in the panel data, and assign the census devices to the panel devices based on the scores and the weights.
US11924485B2

The present invention discloses techniques of displaying a video. The disclosed techniques comprises receiving comment text information from a user, the comment text information is associated with the video; determining that the comment text information corresponds to a predetermined type of bullet screen based on parsing the comment text information; displaying a target bullet screen being generated based on the comment text information; displaying at least one interface element each of which is selectable and corresponds to an operation associated with the target bullet screen in response to detecting a selection of the target bullet screen on a first interface for playback of the video; and controlling the video to jump to a target interface for playback of the video in response to detecting a selection of one of the at least one interface element.
US11924484B2

A system control apparatus for acquiring a prototype manifest file that is a basis of a manifest file to be transmitted to a viewing client in a system for delivering video data over a network, includes: an estimation unit configured to analyze content of a prototype manifest file acquired from an origin server, to determine a next acquisition timing of the prototype manifest file; and an acquisition unit configured to acquire the prototype manifest file from the origin server, based on the next acquisition timing determined by the estimation unit.
US11924481B2

The disclosed computer-implemented method may include (1) accessing a first media data object and a different, second media data object that, when played back, each render temporally sequenced content, (2) comparing first temporally sequenced content represented by the first media data object with second temporally sequenced content represented by the second media data object to identify a set of common temporal subsequences between the first media data object and the second media data object, (3) identifying a set of edits relative to the set of common temporal subsequences that describe a difference between the temporally sequenced content of the first media data object and the temporally sequenced content of the second media data object, and (4) executing a workflow relating to the first media data object and/or the second media data object based on the set of edits. Various other methods, systems, and computer-readable media are also disclosed.
US11924478B2

Systems and methods for improving determination of encoded image data using a video encoding pipeline, which includes a first transcode engine that entropy encodes a first portion of a bin stream to determine a first bit stream including first encoded image data that indicates a first coding group row and that determines first characteristic data corresponding to the first bit stream to facilitate communicating a combined bit stream; and a second transcode engine that entropy encodes a second portion of the bin stream to determine a second bit stream including second encoded image data that indicates a second coding group row while the first transcode engine entropy encodes the first portion of the bin stream and that determines second characteristic data corresponding to the second bit stream to facilitate communicating the combined bit stream, which includes the first bit stream and the second bit stream, to a decoding device.
US11924477B2

In a method to improve backwards compatibility when decoding high-dynamic range images coded in a wide color gamut (WCG) space which may not be compatible with legacy color spaces, hue and/or saturation values of images in an image database are computed for both a legacy color space (say, YCbCr-gamma) and a preferred WCG color space (say, IPT-PQ). Based on a cost function, a reshaped color space is computed so that the distance between the hue values in the legacy color space and rotated hue values in the preferred color space is minimized. HDR images are coded in the reshaped color space. Legacy devices can still decode standard dynamic range images assuming they are coded in the legacy color space, while updated devices can use color reshaping information to decode HDR images in the preferred color space at full dynamic range.
US11924475B2

Examples of video encoding methods and apparatus and video decoding methods and apparatus are described. An example method of video processing includes performing a conversion between a current picture of a video and a bitstream of the video according to a rule. The rule specifies that the current picture is a recovery point picture in response to the current picture being a Gradual Decoding Refresh (GDR) picture with a recovery Picture Order Count (POC) value of 0. The recovery POC count specifies a recovery point of decoded pictures in an output order.
US11924464B2

An example device for requesting a reduced resolution for video data includes a memory configured to store video data; and one or more processors implemented in circuitry and configured to: decode a first sequence of pictures of a bitstream, the first sequence of pictures having a first resolution; in response to determining that the device is to enter a power saving mode, send a message requesting a reduced resolution relative to the first resolution for a second sequence of pictures, the second sequence of pictures being subsequent to the first sequence of pictures in coding order; and decode the second sequence of pictures of the video data of the bitstream, the second sequence of pictures having the reduced resolution. The reduced resolution may be reduced spatial resolution, reduced temporal resolution (frame rate), or both.
US11924462B2

A video decoding method includes obtaining split information indicating whether to split a current block, splitting the current block into two or more lower blocks when the split information indicates to split the current block, obtaining encoding order information indicating an encoding order of the lower blocks of the current block, determining a decoding order of the lower blocks according to the encoding order information, and decoding the lower blocks according to the decoding order.
US11924457B2

The present disclosure relates to a method and apparatus for motion vector derivation for affine based inter prediction of chroma subblocks based on a chroma format. The method includes: determining chroma scaling factors in horizontal and vertical directions based on chroma format information, wherein the chroma format information indicates a chroma format of a current picture which the current image block belongs to; determining a set of luma subblocks of the luma block based on values of the chroma scaling factors; and determining a motion vector for a chroma subblock of the co-located chroma block based on motion vectors of one or more luma subblocks in the set of luma subblocks.
US11924454B2

A coding tool setting method and a video decoding apparatus using the same are disclosed. An embodiment of the present invention relates to a method for setting whether or not to use a coding tool, and provides a coding tool setting method comprising the steps of: decoding, from a bitstream, a profile syntax element indicating a target profile among available profiles and a coding tool syntax element for configurable coding tools, the coding tool syntax element indicating whether or not to apply the coding tool; and setting, on the basis of the coding tool syntax element, target coding tools that are coding tools included in the target profile to be on or off.
US11924449B2

A learning model is trained for rate-distortion behavior prediction against a corpus of a video hosting platform and used to determine optimal bitrate allocations for video data given video content complexity across the corpus of the video hosting platform. Complexity features of the video data are processed using the learning model to determine a rate-distortion cluster prediction for the video data, and transcoding parameters for transcoding the video data are selected based on that prediction. The rate-distortion clusters are modeled during the training of the learning model, such as based on rate-distortion curves of video data of the corpus of the video hosting platform and based on classifications of such video data. This approach minimizes total corpus egress and/or storage while further maintaining uniformity in the delivered quality of videos by the video hosting platform.
US11924445B2

Techniques are described for compressing data using machine learning systems and tuning machine learning systems for compressing the data. An example process can include receiving, by a neural network compression system (e.g., trained on a training dataset), input data for compression by the neural network compression system. The process can include determining a set of updates for the neural network compression system, the set of updates including updated model parameters tuned using the input data. The process can include generating, by the neural network compression system using a latent prior, a first bitstream including a compressed version of the input data. The process can further include generating, by the neural network compression system using the latent prior and a model prior, a second bitstream including a compressed version of the updated model parameters. The process can include outputting the first bitstream and the second bitstream for transmission to a receiver.
US11924421B2

Devices, systems and methods for digital video coding, which includes using default motion candidates for video coding, are described. An exemplary method for video processing includes determining, for a conversion between a block of a video and a bitstream representation of the video, weights to use for a weighted average of prediction samples along an edge of two partitions of the block. The two partitions are generated according to a geometry partition mode, and the weights are selected from a first weighting factor group that at least one of the weights is equal to 0 or 1. The method also includes performing the conversion based on the determining.
US11924416B2

In an image processing device (i.e. encoder or decoder), the number of loop filter stages is lowered by combining bilateral loop filtering (or Hadamard loop filtering) with either sample Adaptive Offset Filtering (SAO) or Adaptive Loop Filtering (ALF). This avoids the implementation problems associated with too many loop filter stages and provides approximately the same compression efficiency gain as having separate loop filter stages.
US11924411B2

A method and a computing device are provided for video coding. The method may include deriving parameter α and parameter β for a CCLM mode by using a predetermined number of neighboring reconstructed luma samples and chroma samples in a CU; and generating a final chroma predictor for the chroma samples of the CU by using the parameter α and the parameter β.
US11924399B2

A stereoscopic display device including a barrier panel is provided. When a viewing distance of a viewer is out of the proper range, the stereoscopic display device may shift the blocking regions and the transmitting regions of the barrier panel. The stereoscopic display device may maintain the ratio of channels located within a barrier blocking region and a barrier transmitting region of the barrier panel by using the channels disposed within trigger regions of the barrier panel. Thus, the stereoscopic display device may provide a stereoscopic image of good quality to the viewer located at a region being out of the proper range.
US11924391B2

A system obtains a data set representing immersive video content for display at a display time, including first data representing the content according to a first level of detail, and second data representing the content according to a second higher level of detail. During one or more first times prior to the display time, the system causes at least a portion of the first data to be stored in a buffer. During one or more second times prior to the display time, the system generates a prediction of a viewport for displaying the content to a user at the display time, identifies a portion of the second data corresponding to the prediction of the viewport, and causes the identified portion of the second data to be stored in the video buffer. At the display time, the system causes the content to be displayed to the user using the video buffer.
US11924389B2

An information processing apparatus detects a signal transmitted from an external communication apparatus and displays information of the communication apparatus corresponding to the detected signal. If a first signal is detected, a notification screen for prompting a user to perform a specification operation on the communication apparatus is displayed, and if a second signal is detected after displaying the notification screen, when the second signal corresponds to the specification operation, information of the communication apparatus corresponding to the second signal is displayed. If the first signal and the second signal are both detected, a second notification screen for prompting the user to perform a different second specification operation is displayed, and if a third signal is detected after displaying the second notification screen, when the third signal corresponds to the second specification operation, information of the communication apparatus corresponding to the third signal is displayed.
US11924387B2

A sheet conveying device includes a corrector configured to correct a position of a sheet, and at least three detectors disposed in a sheet conveyance direction. Each of the at least three detectors is configured to detect a lateral end of the sheet according to a length of the sheet to be conveyed in the sheet conveyance direction. The corrector is configured to correct the position of the sheet based on detection results of each of the at least three detectors.
US11924384B2

An information processing apparatus includes a processor configured to: acquire a read image resulting from reading a recording medium where a diagnostic image to be used to diagnose an image forming apparatus is formed; acquire, from the read image, an image read portion of the recording medium from which the diagnostic image is read and one specific portion of a non-formation read portion, the non-formation read portion resulting from reading a non-formation portion of the recording medium where the diagnostic image is not formed; and output the image read portion and the one specific portion.
US11924382B1

A system may include one or more of a called device, a calling device, configured to call the called device, and a network module. The network module is configured to process incoming call information of a call placed to the called device and configured to route the call to a destination based on preferences of the called device.
US11924380B2

A method includes selecting a customer of a company; constructing a digital footprint of the selected customer. The method includes inputting the digital footprint to an artificial intelligence (AI) engine. The method includes obtaining one or more probability values from the AI engine based on the input digital footprint. The method includes selecting a call driver, from among a plurality of call drivers, as a predicted call driver. The method includes providing the predicted call driver to a call center associated with the company.
US11924377B2

Disclosed here is a method to determine a user intent when a user device initiates an interactive voice response (IVR) call with a wireless telecommunication network. A processor can detect the IVR call initiated with the network and determine whether the user device is a member of the network. Upon determining that the user device is a member of the network, the processor can obtain user history including interaction history between the user and the network. Based on the user history, the processor can predict the user intent when the user initiates the IVR call. The processor can detect whether user device is a 5G capable device. Upon the determining that the device is 5G capable and based on the predicted user intent, the processor can suggest to the user an application configured to execute on the user device and configured to address the predicted user intent.
US11924375B2

Various embodiments relate generally to data science and data analysis, computer software and systems, and control systems to provide a platform to implement automated responses to data representing electronic messages, among other things, and, more specifically, to a computing and data platform that implements logic to facilitate implementation of an automated predictive response computing system independent of electronic communication channel or payload of an electronic message payload, the automated predictive response computing system being configured to implement, for example, an automated voice-text response engine configured to build and adaptively implement conversational data flows based on, for example, classification of an electronic message and a predictive response. In some examples, a method may include detecting an electronic message includes inbound voice data, analyzing inbound voice data, invoking an automated response application, and selecting a response, among other things.
US11924373B2

One example method of operation may include identifying a call originated from a caller entity destined for a called entity at a call content server, identifying a called number associated with the called entity and a caller number associated with the caller entity, comparing a telephone number prefix associated with the called number with a number of enhanced call content data elements to identify a match, selecting one or more of the enhanced call content data elements to pair with the called number based on the match, and forwarding the selected enhanced call content data elements to the called entity.
US11924372B2

The present invention provides a call processing method and a device. The call processing method includes: receiving, by a customized alerting tone server, a call request sent by a calling terminal, and forwarding the call request to a called terminal; receiving a called terminal ringing message, and playing a customized alerting tone audio stream and a customized alerting tone video stream to the calling terminal; receiving a called terminal message indicating that a called user answers a call, and performing call media resource negotiation and customized alerting tone video resource negotiation with the calling terminal; and stopping playing the customized alerting tone audio stream to the calling terminal, and playing the customized alerting tone video stream to the calling terminal. The customized alerting tone continuous playing solution of the present invention enriches user experience and improves network usage.
US11924370B2

A method for controlling a real-time communication between at least two participants can include identifying, from the at least two participants a first participant as an active speaker in the conversation by using audio signals received from the first participant via a microphone, and activating the digital assistant unit for the first participant. A voice recognition procedure for identifying and transcribing identified voice commands can be used so the transcribed voice commands are analyzed and executed.
US11924368B2

To improve accuracy of an evaluation in an acoustic quality evaluation test performed by comparing an evaluation target sound and a reference sound. A data correction apparatus 3 compares, in a call performed between a near-end terminal 1 and a far-end terminal 2, an evaluation target sound in which a voice output from the near-end terminal 1 is recorded and a reference sound in which a voice spoken by a call partner using the far-end terminal 2 to correct test data used in a listening test for evaluating acoustic quality of the call. A correction target determination unit 31 determines, as a correction target section, a voiced section that does not include the voice of the call partner detected from an acoustic signal representing the reference sound. A correction execution unit 32 updates the correction target section of the acoustic signal representing the reference sound with a non-voice signal predetermined.
US11924367B1

Joint noise and echo suppression may be performed for enhancing two-way audio communications. Audio data is captured at a communication device and audio data transmitted to the communication device from another communication device are used as input features to a trained machine learning model that uses the transmitted audio data as a reference signal to eliminate residual echo in the captured audio data when also suppressing noise in the captured audio data.
US11924360B2

An example operation may include one or more of receiving a blockchain request comprising a timestamp added by one or more endorsing nodes included within a blockchain network, identifying that the timestamp added by an endorsing node from among the one or more endorsing nodes is a modification to a previously added timestamp provided by the computing node, determining a reputation value for the endorsing node based on a difference between the timestamp added by the endorsing node and the previously added timestamp provided by the computing node, and transmitting the determined reputation value of the endorsing node to an ordering node within the blockchain network.
US11924358B2

This application provides a method for issuing a digital certificate performed by a digital certificate issuing center that includes a public-private key generation module and an authentication module. The method includes: receiving a public-private key request from a node in a blockchain network; generating a public key and a private key of the node by using the public-private key generation module, and transmitting the public and private keys to the node; receiving the public key of the node and registration information of the node, and authenticating the registration information by using the authentication module; and generating, in accordance with a determination that the authentication succeeds, a digital certificate of the node by using the authentication module, and transmitting the digital certificate to the node. The embodiments of this application can improve the probative value of an issued digital certificate, thereby improving the security of data exchange in a blockchain network.
US11924354B2

A method for ingesting data artifacts into a recovery pod may include: identifying, by a first controller, a data artifact for ingestion; pulling, by the first controller, the data artifacts into the first datastore; confirming, by second controller, that a first airlock between the first zone and the second zone and a second airlock between a third zone and the second zone are closed; opening, by the second controller, the first airlock; identifying, by the second controller, the data artifacts in the first datastore; pulling, by the second controller, the data artifacts into a second datastore; confirming that the first airlock and the second airlock are closed; opening, by the second controller, the second airlock; identifying, by a third controller, the data artifacts in the second zone datastore; pulling, by the third controller, the data artifacts into a third zone datastore; and closing, by the second controller, the second airlock.
US11924350B2

A system and method for selectively transmitting cryptographically signed information to a limited number of parties of an agreement using one or more processors. For each party affected by a decision of a first party, the processors generate a token according to a function of both (i) a cryptographic key of the given party and (ii) a cryptographic key of a second party, and transmit to respective private data stores of each party (a) the first party's decision, (b) the generated token, and (c) an identity of the second party. The decision of the first party and the generated tokens are transmitted to the private data stores of only the parties that are affected by the decision of the first party.
US11924345B2

Embodiments described herein relate to apparatuses and methods for registering and storing a local key associated with a local application of a communication device, including, but not limited to, receiving a request from the communication device to register and store the local key, evaluating the request based on at least one first policy, and sending the request to register and store the local key to a secure key storage.
US11924344B2

A method for accessing customer data includes receiving an access request requesting access to customer data stored on a storage abstraction. The access request includes a justification that specifies a purpose/reason for requesting access to the customer data. The method also includes validating the justification, and after validating the justification, transmitting the justification to an external key management service associated with a customer of the customer data. The external key management service is configured to grant or deny access to the customer data based on the justification. The method also includes receiving an approved access token from the external key management service when the external key management service grants access to the customer data and accessing the customer data stored on the storage abstraction using the approved access token received from the external key management service.
US11924342B2

Improved computer-implemented methods for evidencing the existence of a digital document, anonymously evidencing the existence of a digital document, database management for systems for evidencing the existence of a digital document, and verifying the data integrity of a digital document provide increased reliability, security and enhance trust from users and third parties.
US11924340B2

Techniques are disclosed for cryptographically secure shuffling processes for generating and utilizing secrets in an infrastructure-as-a-service (IaaS) environment. In an embodiment, a method comprises generating a source list and a destination list, the source list and destination list association with a sequential format and the source list comprising a plurality of elements in the sequential format; generating a first random number and a second random number; determining a first element in the source list, the first element corresponding to a position in the sequential format of the source list based on the first random number; determining a first destination position in the destination list, the first destination position corresponding to a position in the sequential format of the destination list based on the second random number; and updating the destination list to include the first element in the source list at the first destination position.
US11924335B1

Systems, apparatuses, methods, and computer program products are disclosed for session authentication. In an exemplary embodiment, a session authentication system encodes and decodes a set of quantum bits using different quantum bases in order to generate a random number used to generate a session key or a random seed (e.g., a set of bits that is randomized due to quantum effects such as the principle of quantum uncertainty) for pseudorandom number generation used to establish a secure session. An example system includes decoding circuitry configured to receive, over a quantum line, a set of qbits generated based on a first set of quantum bases not received by the decoding circuitry, and decode, based on a second set of quantum bases, the set of qbits to generate a decoded set of bits; and session authentication circuitry configured to generate a session key based on the decoded set of bits.
US11924333B2

Systems and methods providing access control and data privacy/security with decentralized ledger technology are disclosed. To ensure data privacy the decryption or access to data by a non-data owner requires joint orchestration of decentralized system nodes to provide partial decryption components with n-of-x required to fulfill request. Data can be encrypted, and access control policy can be decided including required number of key fragments to fulfill decryption. Access control policies can be stored in the decentralized ledger based system. Key information can be stored in the system in a decentralized manner with partial key fragments encrypted and split among system nodes. An access request can be sent to the system to fetch a data file, without disclosing the requester's identity in the system. The decentralized ledger based system can verify a legitimate request to access the data and denies access to malicious or faulty participants.
US11924331B2

Systems and processes are described for a message service with distributed key caching for server-side encryption. Message requests are received by message handlers of the message service that cache data encryption keys used to encrypt and decrypt messages that are stored to message containers in back end storage. A metadata service obtains the data encryption keys from a key management service, caches the keys locally, and sends the keys to the message handlers upon request, where the keys are cached, again. The key management service may generate the data encryption keys based on a master key (e.g., a client's master key). The message handlers may send both message data encrypted using the data encryption key and an encrypted copy of the data encryption key to be stored together in the data store.
US11924328B2

A first copy of a True Random Number (TRN) pool comprising key data of truly random numbers in a pool of files may be stored on a sender and a second copy of the TRN pool is stored on a receiver. An apparent size of the TRN pool on each device is expanded using a randomizing process for selecting and re-using the key data from the files to produce transmit key data from the first copy and receive key data from the second copy.
US11924323B2

An example operation may include one or more of receiving a request for blockchain information from a user device, acquiring blockchain data from a plurality of blockchains which are actively operating and available for joining, determining an amount of trust for each blockchain among the plurality of blockchains based on acquired blockchain data of the respective blockchain, and outputting a list identifying the plurality of blockchains where each blockchain on the list comprises a trust indicator indicating a determined amount of trust for the respective blockchain.
US11924320B2

There is provided a device for protecting a cryptographic program implemented in a cryptographic computing device, the cryptographic computing device includes one or more processors, the cryptographic program comprising instructions and being associated with an initial execution order of the instructions. The device comprises a compiler to compile the cryptographic program, which provides an intermediate representation of the cryptographic program comprising instructions and variables used to execute the instructions. The device is configured to: determine a graph of dependencies comprising nodes and edges, each node of the graph representing an instruction of the intermediary representation, and each edge of the graph representing a variable of the intermediary representation; mask the graph of dependencies by replacing each variable of the graph of dependencies with a masked variable, the processing unit determining the masked variable by applying a masking scheme to the variable, which provides a masked graph of dependencies; determine at least a set of independent instructions using the masked graph of dependencies; determine an execution order for each set of independent instructions from the initial execution order, the execution order representing the order of execution of the set of independent instructions by at least one of the one or more processors.
US11924319B2

A slave device (10) includes a frequency synchronization unit (11) configured to generate frequency control information synchronized with a frequency of a synchronous Ethernet (registered trademark) signal received from a master device (20), a time synchronization unit (12) configured to generate time control information synchronized with a time based on a time packet received from the master device (20), and a time synchronization signal generation unit (13) configured to generate a time synchronization signal based on the frequency control information and the time control information. The frequency synchronization unit (11) includes a frequency synchronizing PLL including a DCO (11a) configured to output the frequency control information, and the time synchronization unit (12) includes a time synchronizing PLL including a DCO (12a) configured to output the time control information.
US11924316B2

A method for automated computer security policy generation and anomaly detection includes receiving first network traffic data via an input port. The first network traffic data includes multiple data packets. A representation of each of the data packets is stored in a first data store, to produce a set of training data. A set of communication protocols associated with the set of training data is detected, and the training data from the set of training data is restructured based on the set of communication protocols, to produce processed data. The processed data is stored as non-malicious data in a second data store. The first network traffic data is transmitted, in unmodified form, via an output port. Second network traffic data including multiple data packets is subsequently received, via the input port, and compared to the non-malicious data to detect an anomaly in the second network traffic data.
US11924314B2

A message transmission method, a message transmission device, a network side device and a storage medium are provided. The method includes: determining a PTP version of a sending port set by a network side device; sending a first PTP message that uses the PTP version of the sending port through the sending port.
US11924313B2

Implementations of the present disclosure are directed to systems and methods for processing headers that support multiple protocols. A header of a packet includes a bridge type (BTYPE) field that indicates the protocol of the packet. A command field of the packet is interpreted differently based on the value of the BTYPE field. Among the benefits of implementations of the present disclosure is that a single network may be used to carry packets of different protocols without the overhead of encapsulation.
US11924301B2

The present disclosure provides a method in a network node implementing a Service Communication Proxy, SCP, function. The method includes: receiving, from a first Network Function, NF, a request destined to a second NF, wherein the request comprises information on the second NF; redirecting the request to a third NF, wherein the redirected request comprises information on the third NF; and transmitting a response to the first NF, wherein the response comprises the information on the third NF.
US11924290B2

An information handling system operating a sensor fusion prediction based automatic adjustment system may comprise sensors measuring influencing attributes comprising information handling system operational values, wherein a subset of the influencing attributes influence one of a plurality of system characteristics, and a memory storing definitions of a user behavior characteristic, a performance mapping characteristic, a power status characteristic, a security profile characteristic, and a policy configuration characteristic. A processor may execute code instructions to apply stochastic prediction to the subset of influencing attribute values to predict a future value of a system characteristic influenced by the subset of influencing attribute values at a future instance in time, determine an adjustment to a policy controlling operational bounds of the system characteristic if the predicted future value of the system characteristic falls outside current policy-defined operating bounds, and automatically perform the policy adjustment before the future instance in time.
US11924282B2

A medical device system for use in patient resuscitation and medical device management includes a fleet of medical devices associated with a common administrator and distributed over multiple locations. Each medical device includes a memory, a processor configured to store medical device information including device status information and clinical event information, and a communication component configured to transmit the stored medical device information via a network. The system includes one or more servers communicatively coupled to the fleet of medical devices and one or more user devices located remotely from the servers. The servers include a communication component configured to receive the medical device information from the fleet of medical devices, a memory configured to store the received medical device information, and a processor configured to provide a report comprising the device status information for the fleet of medical devices at a medical device dashboard accessible by the user devices.
US11924280B2

A system comprises a computer having a processor and a memory, the memory storing instructions executable by the processor to receive a communication-protocol-agnostic vehicle control request for a vehicle, determine, based on the communication-protocol-agnostic vehicle control request, a vehicle control operation to be executed at the vehicle, identify, from among a plurality of candidate communication-protocol-specific communication links, a communication-protocol-specific communication link via which to send a vehicle control directive to the vehicle, and send the vehicle control directive to the vehicle via the identified communication-protocol-specific communication link to cause the vehicle to execute the vehicle control operation.
US11924266B2

Sending streamed data packets from a producer to a consumer. A method includes, at a first entity, sending consumable data packets from the first entity to a second entity at a first consumable packet rate. The method further includes receiving a first phase delta from the second entity, wherein the first phase delta is computed from transmission jitter, computed from timing information in the consumable data packets. The method further includes sending from the first entity consumable data packets at a second consumable packet rate, the second consumable packet rate being dependent on the first phase delta.
US11924265B2

A communication system includes a communication device that may transmit a command for requesting a response about communication quality to a specific type of user terminal, and a user terminal that may transmit the communication quality in response to the command.
US11924261B2

A web server provides media content for playback on client devices that is associated with a set of enhanced features. When enabled, each enhanced feature provides functionality associated with and supplemental to the media content. The web server performs a handshake with each of a plurality of client devices to authenticate a communication channel. The web server enables one or more of the enhanced features while delivering media content for playback on a first device if information exchanged in the handshake with the first device satisfies a first criterion. The web server delivers the media content for playback on a second device, without enabling any of the enhanced features, if information exchanged in the handshake with the second device does not satisfy the first criterion.
US11924257B2

Systems and methods for providing real-time media communication services to make use of a software application resident on a server that receives the media feeds of multiple sending participants, and generates a single composed media feed that includes media feeds of the sending participants and that sends the composed media feed to other computing services for manifold purposes like recording, re-broadcasting and/or re-transmission to remote computing devices of multiple real-time media communication participants. The composed media feed can include supplementary information in addition to the media feeds of live participants. This supplementary information is provided by means of API configurable programmatic code that is then executed and used as the software application resident on the server.
US11924252B2

Methods and network devices implement a lawful interception (LI) trigger control function as an LI target handler and a modified trigger control function. A generic LI triggering interface enables the modified trigger control function to query the LI target handler regarding whether entities using a network function instance are in a target list. The LI target handler has to meet the LI security requirements, but the modified trigger control function does not have to meet such requirements.
US11924243B2

A search apparatus includes processing circuitry configured to extract fingerprints that are combinations of first communication data corresponding to requests and second communication data corresponding to responses to the requests, from communication data obtained by executing known malware, give degrees of priority corresponding to degrees of maliciousness of the malware, to the fingerprints, generate probes that are requests based on the first communication data included in the fingerprints and signatures based on the second communication data included in the fingerprints, decide, based on information about communication of sending-out destinations, search-target sending-out destinations from among the sending-out destinations, send out the probes generated to the search-target sending-out destinations decided in order according to the degrees of priority given, and determine whether the search-target sending-out destinations are malicious or not, based on whether responses to the probes sent out match the signatures generated or not.
US11924236B1

In a general aspect, risks associated with cryptography usage in network communication between computing nodes are identified. In some aspects, a network packet capture agent obtains cryptography usage data by examining network traffic communicated by computing nodes in the computing environment. A cryptography usage analysis agent identifies cryptography usage risks based on the cryptography usage data. A cryptographic risk identification agent identifies one or more applications associated with the cryptography usage risks.
US11924234B2

A client device accesses content and performs actions at a remote application server via a user-agent application. The application server directs the user-agent application to a security verification system to retrieve and perform security tests. The security verification system receives information from the user-agent application describing characteristics of the user-agent application, and the security verification system selects a set of security tests to be performed by a security module executing in the user-agent application to verify that the user-agent application is accessing the application server consistent with the described user-agent application. The security verification system compares a set of test results with other user-agent applications and provides a token to the user-agent application to access the application server. The security module may also monitor and actions on the user-agent application to permit the security verification system to revise or revoke the token.
US11924232B2

Techniques for dynamically generating a trust level for an IoT device are described. A plurality of characteristics for a first device of a first device type are analyzed against a set of expected characteristics of the first device type. Embodiments monitor runtime behavior of the first device over a window of time to collect runtime behavior data and analyze the runtime behavior data for the first device to determine whether the device is operating in a manner consistent with the first device type. Upon determining that the analyzed plurality of characteristics is consistent with the set of expected characteristics and that the first device is operating in a manner consistent with the first device type, embodiments generate a security profile for the first device designating the first device as a trusted device.
US11924224B2

Aspects of the disclosure relate to processing external messages using a secure email relay. A computing platform may receive, from a message source server associated with a first domain, a first email message and a first set of authentication credentials. Based on validating the first set of authentication credentials, the computing platform may inject, into the first email message, a DomainKeys Identified Mail (DKIM) signature of a second domain different from the first domain, which may produce a signed message that identifies itself as originating from the second domain. Based on scanning and validating content of the signed message, the computing platform may send the signed message to a message recipient server, which may cause the message recipient server to validate the DKIM signature of the signed message and determine that the signed message passes Domain-based Message Authentication, Reporting and Conformance (DMARC) with respect to the second domain.
US11924218B2

A method for accessing a network resource including detecting an attempt by a user via a computing device to access a service enabled by a computing system via a network and transmitting via the network to the computing system a first request to access the service in response to detecting the attempt by the user to access the service, the first request including at least one empty personally identifiable data structure. A failure to access the service responsive to the first request is determined. A second request to access the service in response to the first failure to access the service is transmitted via the network to the computing system, the second request including artificial personally identifiable information, and access to the service from the computing system is received for the user.
US11924215B2

The present disclosure generally relates to systems and methods that intelligently generate reassignment value conditions for reassigning access rights. The systems and methods include executing a trained contextual machine-learning model to generate predictions of value components of the reassignment value condition, which once satisfied, enables an access-right requestor to have an assigned access right reassigned to the access-right requestor.
US11924212B2

Providing access control to distributed resources, including storing, at a computing dock coupled to an information handling system, a local access database indicating verified credentials of one or more users; receiving, at the computing dock, a request for access to a resource coupled to the computing dock; providing, in response to the request for access, an authentication request to an authentication system; in response to the authentication request, providing, by the computing dock, an authentication challenge to the information handling system; receiving, at the computing dock and in response to the authentication challenge, user credentials at the authentication system; verifying, at the authentication system, the user credentials against the local access database; providing, based on the verified user credentials, an authorization token to the first device; and allocating, based on the authorization token, access to the resource to the information handling system.
US11924179B2

A secure communication tunnel between user space software and a client device can be established. A private session key can be communicated from the user space software to a network communication device via an application programming interface. Outbound session packets can be communicated from the user space software to the network communication device. The network communication device can generate encrypted outbound session packets by encrypting the outbound session packets using the private session key; communicate to the client device, via the secured communication tunnel, the encrypted outbound session packets; receive, by the network communication device from the client device, via the secured communication tunnel, inbound session packets; generate decrypted inbound session packets by decrypting the inbound session packets using the private session key; and communicate the decrypted inbound session packets.
US11924178B2

Disclosed is a system and a method for information distribution. The system comprises: a server for generating a group key and its corresponding key deriving parameter, wherein the server encrypts sensitive contents by using the group key to obtain encrypted information; and terminals configured to receive the encrypted information through an open channel, extract the group key, then decrypt the encrypted information by using the group key to obtain the original content. In the group forming process, each terminal encrypts its private identifier using the public key and submits the ciphertext to the server. In information distribution process, the server transmits the ciphertext of sensitive contents and the key deriving parameter to the terminals via open channel Because private information available only to respective group members is required for calculating the group key, this mechanism ensures that the sensitive content can be transmitted securely on the open channel.
US11924173B2

An edge node has a central processing operable to gather sensor node data via a sensor and store at least part of the sensor node data locally in a public region of a persistent storage. The edge node backs up duplicate portions of the sensor node data to public storage regions of peer-edge nodes. The edge node receives private data from a host that is coupled to the edge computing node and the peer edge nodes, and stores the private data in a private region of the persistent storage. The private region is protected from the peer edge nodes using distributed key management.
US11924170B2

The present invention relates to the field of networking and API/application security. In particular, the invention is directed towards methods, systems and computer program products for Application Programming Interface (API) based flow control and API based security at the application layer of the networking protocol stack. The invention additionally provides an API deception environment to protect a server backend from threats, attacks and unauthorized access.
US11924169B1

Systems and techniques provide activity monitoring and selective obfuscation of various fields or categories of information included in traffic between servers providing services and end-user devices accessing such services. The selective obfuscation may account for a user's role and one or more levels of authorization or permission assigned to such a role. More generally, the disclosed techniques provide the ability to selectively restrict end-user access to data included in server responses, such that desired portions of the data are not accessible while other portions of the data are still accessible. An administrator tool may configure the permissions and rules used to decide whether traffic to or from a particular server or service should be selectively obfuscated; and if so, how that traffic should be selectively obfuscated.
US11924165B2

Techniques for securing containerized applications are disclosed. In some embodiments, a system, process, and/or computer program product for securing containerized applications includes detecting a new application container (e.g., an application pod); deploying a security entity (e.g., a firewall) to the application container; and monitoring all traffic to and from the application container (e.g., all layer-7 ingress, egress, and east-west traffic associated with the application container) using the security entity to enforce a policy.
US11924152B2

Users of personalized messaging systems can encounter message fatigue, thereby reducing the efficacy of a message on its intended recipient. Message fatigue can result in wasted computational resources and bandwidth as messages transmitted over a network to the user's client device are not acted upon at the client device. For applications involving desired user interactions and responses, personalized messaging can be a tool to achieve user engagement targets. The systems and methods presented herein may address several of the technical challenges with personalized messaging.
US11924151B2

Methods and systems for analysis and/or classification of electronic message information so as to capture and identify salient objects exchanged during electronic message passing in order to impute certain information about the object, groups of objects, the message, groups of messages, the parties, communities involved in the message exchange or combinations, thereof.
US11924139B2

In order to properly transmit UCI, even when PUCCH repetition transmission is used in future radio communication systems, a user terminal according to one aspect of the present disclosure includes a control section that determines a codebook for physical uplink control channel (PUCCH) transmission per slot, based on at least one of physical downlink shared channel (PDSCH) candidate occasions, a timing of hybrid automatic repeat request acknowledgement (HARQ-ACK) transmission corresponding to a received PDSCH and a PUCCH repetition factor, when PUCCH repetition transmission and a semi-static HARQ-ACK codebook are configured; and a transmitting section that transmits HARQ-ACK based on the codebook by applying the PUCCH repetition transmission.
US11924135B2

The present disclosure provides a method and a device in a node for wireless communications. A first node receives a first signaling; transmits a second signaling; and transmits a first signal in a second time-frequency resource set; the second time-frequency resource set belongs to a target resource sub-pool; the first signaling is used to determine a first identifier, a first priority and a reference time-frequency resource set; a first time-frequency resource set is related to the reference time-frequency resource set; the second signaling is used to indicate a second identifier, a second priority and the second time-frequency resource set; a relationship between a first transmission node identified by the first identifier and a second transmission node identified by the second identifier. The present disclosure offers an effective way of addressing the resource wastes and transmission delay resulting from PSFCH conflicts in the NR V2X system.
US11924134B2

Aspects presented herein may improve UE positioning by providing enhanced resource patterns that may reduce positioning latency and resource overhead for the UE positioning. In one aspect, a transmitter divides a reference signal associated with UE positioning into a plurality of sub-bandwidths, each of the plurality of sub-bandwidths being associated with a comb offset. The transmitter transmits, to a receiver, the reference signal via the plurality of sub-bandwidths. In another aspect, a receiver receives a configuration to measure a reference signal associated with UE positioning. The receiver receives, from a transmitter, the reference signal via a plurality of sub-bandwidths, each of the plurality of sub-bandwidths being associated with a comb offset.
US11924131B2

Embodiments of the present invention disclose a beam indication method and apparatus, a device, and a medium. The method includes: receiving beam indication information transmitted by a network-side device, where the beam indication information is used to indicate a plurality of pieces of beam information of a channel or a reference signal, and the plurality of pieces of beam information correspond to different transmission and reception point TRP identification information; and transmitting the channel or the reference signal according to the beam indication information.
US11924130B2

For determining reference signal locations, a method determines a number of Transmission Time Intervals (TTI) in a scheduled transmission of a plurality of TTI. The method further determines one or more reference signal locations based on the number of TTI and one or more of a parameter received from a higher layer wherein the higher layer is higher than a physical layer, a subframe index, a subband size, and a Time Division Duplex (TDD) configuration for the scheduled transmission.
US11924128B2

The present specification relates to a method and apparatus for transmitting a reference signal in a wireless communication system. According to this specification, in a method for transmitting a reference signal in a wireless communication system, a method performed by a base station comprises: transmitting, to a terminal, control information including panel identification information related to identification of a plurality of antenna panels used for transmission of the reference signal, wherein a reference signal sequence used to generate the reference signal is initialized based on the panel identification information by the terminal; and receiving, from the terminal, the reference signal generated based on the initialized reference signal sequence by the terminal.
US11924126B2

A wireless communication technique includes generating, by a wireless terminal, a transmission message that includes a preamble portion and a data portion. In this technique, transmission resources for the data portion are related to transmission resources for the preamble portion using a relationship rule. The wireless terminal transmits the transmission message to a network-side device during a random access procedure.
US11924115B2

Systems and methods are provided for allocating resources between data centers in response to insufficient resources at one of the data centers. One example computer-implemented method includes determining by a first data center, in response to a request for resources, whether the resources exceed remaining resources of the first data center. In response to determining that the requested resources exceed the remaining resources of the first data center, the first data center reserves its remaining resources, appends an entry for the remaining resources to a ledger, and submits a request to a second data center to reserve a difference between the resources in the request and the remaining resources of the first data center. Then, in response to a time interval expiring without the reserved remaining resources being utilized, the reserved remaining resources identified in the entry in the ledger are refunded to the first data center.
US11924114B2

An electronic device, according to various embodiments of the present invention, comprises a network connection device, at least one processor, and a memory operatively connected to the at least one processor, wherein the memory stores instructions which, when executed, cause the at least one processor to: receive a data packet from the network connection device; add the data packet to a packet list corresponding to the data packet; and when the number of data packets included in the packet list is less than a threshold value, flush the data packets to a network stack on the basis of a flush time value for controlling a packet aggregation function, wherein the flush time value may be determined on the basis of the network throughput.
US11924110B2

A system and method for prioritizing network traffic in a distributed environment. The system includes: a plurality of logic modules configured to receive policy data from a network device; a control processor associated with each logic module, each control processor configured to determine data associated with a traffic flow and coordinate traffic actions over the plurality of logic modules; a packet processor associated with each control processor and configured to determine a traffic action based on the traffic flow and received policy data; and at least one shaper object configured to enforce the determined traffic action. The method includes: receiving policy data from a network device; determining data associated with a traffic flow at logic modules to coordinate traffic actions of the logic modules; determining a traffic action based on the traffic flow and received policy data; and enforcing the traffic action across at least one shaper object.
US11924106B2

A system for facilitating sender-side granular congestion control is provided. During operation, the first and second processes of an application can run on sender and receiver nodes, respectively. A first buffer on the sender node can be allocated to the first process. For the first process, the system can then identify a second buffer at a last-hop switch of the receiver node. The system can determine, based on in-flight packets, the utilization of the second buffer. The system can also determine a fraction of available space in the second buffer for packets from the first buffer based on the utilization. Subsequently, the system can determine whether the fraction of the available space can accommodate the next packet from the first buffer. If the fraction of the available space can accommodate the next packet, the system can allow the first process to send the next packet to the second process.
US11924104B2

This application relates to a distributed software-defined network (“DSDN”) for dynamically configuring and managing a wireless communication network. A plurality of DSDN nodes are connected to each other via a plurality of communication paths. Each communication path directly connects two DSDN nodes. Each DSDN node can provide DSDN configurations across diverse and disparate networks by normalizing its data plane network traffic through translation and packet encapsulation. Furthermore, the DSDN node can provide an architecture tolerant of network interruptions and network system fluctuations. For example, in the case of any one of the DSDN node's network interruptions from other DSDN nodes, the DSDN can provide network reconfiguration using network configuration rules stored in a control plane of each DSDN node. Therefore, various embodiments can increase network reliability by the multiple nodes within a software-defined network independently managing its control plane in response to changed network conditions.
US11924098B2

A sticky order routing system may include multiple order routers in communication with an electronic exchange for communicating transaction messages. Each of the order routers communicates transaction messages between multiple associated trading sessions and the electronic exchange, where of the associated trading sessions is assigned to the order router in communication with the electronic exchange. Transaction message traffic between the order routers and the electronic exchange is monitored, such as randomly, based on round-robin assignment, and/or trading data. In response to transaction message traffic exceeding a threshold, the trading session may be assigned to a new order router.
US11924094B2

Provided is a virtual circuit-based data packet processing method, which includes that: identification information of a next-hop Provider Edge (PE) node of a routing packet and identification information of an Original PE (OPE) node of the routing packet are determined according to the routing packet corresponding to a Virtual Private Network (VPN) service instance; a context virtual circuit is determined, wherein nodes at both ends of the context virtual circuit are respectively the current PE node and the OPE node; a virtual circuit label of the context virtual circuit is determined; a final data packet to be forwarded is obtained by carrying a VPN label of the routing packet and the virtual circuit label with an initial data packet of the VPN service instance; and the final data packet to be forwarded is forwarded to the next-hop PE node.
US11924083B2

This disclosure describes techniques for enabling interoperability between asymmetric and symmetric Integrated Routing and Bridging (IRB) modes. An interfacing component may be configured to receive a first route advertisement from a first edge node in a Layer-2 (L2) fabric. The first route advertisement may correspond to an asymmetric format route, for instance. The interfacing component may be further configured to receive a second route advertisement from a second edge node in a L2/Layer-3 (L3) fabric. The second edge node may be configured for symmetric integrated routing and bridging (IRB). The interfacing component may be configured to re-originate the first route and the second route such that the interfacing component is included as a hop in the resultant routes between the L2 fabric and the L2/L3 fabric.
US11924072B2

Systems, methods, and computer-readable media for annotating process and user information for network flows. In some embodiments, a capturing agent, executing on a first device in a network, can monitor a network flow associated with the first device. The first device can be, for example, a virtual machine, a hypervisor, a server, or a network device. Next, the capturing agent can generate a control flow based on the network flow. The control flow may include metadata that describes the network flow. The capturing agent can then determine which process executing on the first device is associated with the network flow and label the control flow with this information. Finally, the capturing agent can transmit the labeled control flow to a second device, such as a collector, in the network.
US11924070B2

Provided in embodiments of the present disclosure are a data processing method and device, the method comprising: receiving a first request message from a target node, the first information containing at least one from among the following: information related to creating a data collection task, information related to updating a data collection task, and information related to cancelling a data collection task; and sending to the target node a first response message used to respond to the first request message.
US11924062B2

Systems, devices, and methods are discussed for defining and monitoring network communication performance in an SD-WAN environment.
US11924061B2

A requested communication quality estimation device estimating a requested communication quality for a macroflow, which is a set of microflows, includes a first estimation unit configured to estimate a requested communication quality for each of a plurality of microflows constituting a macroflow, and a second estimation unit configured to estimate a requested communication quality for the macroflow based on the requested communication quality for each of the plurality of microflows which is obtained by the first estimation unit.
US11924059B2

Described herein are systems and methods for QoS chaining based on control-plane virtual functions for ensuring end-to-end Quality of Service (QoS) of Internet services. The QoS chaining coordinates broadband service delivery via an orchestrated “chain” or Network Service (NS) consisting of control-plane Virtual Network Functions (VNFs) running in the cloud or virtual infrastructure. Separate service elements, network elements, network domains or other service plane or data plane elements or systems have a separate corresponding VNF in the control plane provide monitor and control functions. QoS is ensured End-to-End (E2E) across the chain of VNFs by coordination through the QoS chain or by a coordinating or integrating E2E orchestrator or E2E VNF. The VNFs may be chained, may communicate directly with each other, and may communicate directly with the E2E orchestrator, may communicate with each other through the E2E orchestrator, or may communicate through a shared database.
US11924056B2

Examples of device-driven management are described. A management console can include a set of workflow objects to use in a workflow creation user interface. Workflow objects can be positioned in the workflow creation user interface area based on user manipulation. A device state criteria overlay can be painted on a connector workflow object to indicates that a branch of executable instructions corresponding to the connector workflow object is performed where a client device corresponds to the specified device state criteria.
US11924044B2

In general, techniques are described for organizing execution of distributed operating systems for network devices. A device comprising hardware computing nodes may be configured to perform the techniques. The hardware computing nodes may execute a protocol by which to discover a topology of the plurality of hardware computing nodes, and determine, based on the topology, a subset of the plurality of hardware computing nodes to manage execution of a distributed operating system. The determined subset of the plurality of hardware computing nodes may execute a communication bus by which to synchronize operating system state information between the subset of the plurality of hardware computing nodes. The hardware computing nodes may further execute, based on the operating system state information, the distributed operating system to provide an execution environment in which one or more applications execute.
US11924041B2

The embodiments of the present application provide a wireless backhaul network, a communication method and an apparatus. The wireless backhaul network comprises at least one tree topology structure, each of the at least one tree topology structure being composed of a serving base station node and at least one relay node, the root of the tree topology structure being the serving base station node; and any two nodes in the wireless backhaul network are in a child-parent relationship or non-child-parent relationship, and any two nodes, which are in the child-parent relationship, communicate by means of wireless connections.
US11924037B2

Apparatus and associated methods relate to dynamically configuring an Internet of Things (IoT) device and a processor interfacing the IoT device. The processor captures a specific one or more of a plurality of deployment configuration templates for the IoT. The IoT device is then configured by the processor based, at least in part, on the one or more of the plurality of deployment configuration templates captured. The processor then deploys software for use by the processor to interface with the IoT device configured. The software deployed is determined based on the one or more of the plurality of deployment configuration templates captured.
US11924022B2

A system, method, and computer-readable medium for performing a data center monitoring and management operation. The data center monitoring and management operation includes: monitoring a plurality of data center assets contained within a data center; identifying a plurality of data center issues based upon the monitoring; performing an artificial intelligence operations assisted data center monitoring and management operation, the artificial intelligence operations assisted data center monitoring and management operation data center issue grooming operation automating at least one of identification and resolution of a particular data center issue; and, presenting information regarding the at least one of identification and resolution of the data center issue.
US11924019B2

The present disclosure relates to a system comprising an alarm management module (AMM) that receives an alarm raised by an application running on a network function virtualization unit (NFVU) infrastructure, said NFVU infrastructure comprising a virtualization layer; and facilitates enrichment of the received alarm with NFVU infrastructure specific information based on a physical-and-virtual inventory associated with the NFVU infrastructure, said NFVU infrastructure specific information pertaining to hardware and virtual resources of the NFVU infrastructure that are involved in running said application. The AMM can further receive an infrastructure alarm pertaining to a hardware resource that forms part of the NFVU infrastructure, said infrastructure alarm being associated with a failure of or a potential functional error of the hardware resource; and facilitate enrichment of the received infrastructure alarm information with application information, said application information pertaining to at least one application that is impacted by the hardware resource.
US11924008B2

Disclosed is a compensation circuit which includes a data analyzer that receives a first bit stream including first to N-th bits, counts a number of times of coincidence of each of first to 2M-th patterns each having an M-bit size from the first bit stream, and generates a first pattern stream including first to 2M-th count values each corresponding to the number of times of coincidence of each of the first to 2M-th patterns, and a compensation calculator that determines first to 2M-th compensation values based on the first pattern stream such that results of multiplying the first to 2M-th count values and the first to 2M-th compensation values one-to-one are even. “N” is a natural number, and “M” is a natural number smaller than “N”.
US11924003B2

A serial communication system for communicating data over a Controller Area Network (CAN) bus comprises a security slave device located between a first system node and a Controller Area Network (CAN) bus. The system is characterised in that: said security slave device further comprises a tagging means for inserting data indicative of said first node into a Controller Area Network (CAN) frame received from said first node; said system further comprises a security master device, located between said Controller Area Network (CAN) bus and a second system node; said security master device further comprises a means of extracting said data indicative of first said node from a received data frame; and said system further comprises a means of checking the validity of received Controller Area Network (CAN) frame associated to said extracted data indicative of said first node.
US11923998B2

Provided is a group-based communication interface configured to allow users of the interface to communicate within group-based communication channels and across group-based communication channels to provide relevant information to other users efficiently and effectively. Group-based messaging communications across the plurality of group-based communication channels can be channeled to specific receiver channels providing relevant information to users of the group-based communication interface thereby increasing the efficiency and effectiveness of group-based messaging communications and the lifetime of the system.
US11923996B2

A novel method for performing replication of messages in a network that bridges one or more physical networks to an overlay logical network is provided. A physical gateway provides bridging between network nodes of a physical network and virtual machines in the overlay logical network by serving as an endpoint of the overlay logical network. The physical gateway does not replicate messages from the bridged physical network to destination endpoints in the overlay logical network directly, but instead tunnels the message-to-be-replicated to a designated tunnel endpoint in the overlay logical network. The designated tunnel endpoint in turn replicates the message that was tunneled to it to other endpoints in the overlay logical network.
US11923987B2

Disclosed are a communication technique for merging, with IoT technology, a 5G communication system supporting a data transmission rate higher than a 4G system, and a system therefor. The present disclosure can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security and safety related services, and the like) on the basis of 5G communication technology and IoT-related technology. The present disclosure relates to a wireless communication system, and disclosed are a method and a device for performing retransmission when data for a first-type service is damaged by a second-type service data during transmission of the data for the first-type service in a communication system.
US11923986B2

A communication device transmits to a communication partner device or receives from the partner device a radio frame conforming to an IEEE 802.11 standard series, wherein a capability of HARQ (Hybrid Automatic Repeat reQuest) that a device that transmitted the radio frame has is indicated in a MAC (media access control) frame of the radio frame.
US11923977B1

A user equipment (UE) may transmit, to a network node, an indication of support for a decoder success prediction capability. The network node may obtain the indication of support by the UE for the decoder success prediction probability. The network node may output a transmission for the UE including one or more parameters based on the indication of support by the UE for the decoder success prediction capability. The UE may receive the transmission including one or more code blocks based on the indication of support for the decoder success prediction capability. The network node may optimize a multiple incremental redundancy scheme (MIRS) schedule for at least one of transmitting the transmission or retransmitting the transmission based on the indication of support by the UE for the decoder success prediction capability. The transmission may include the MIRS schedule.
US11923971B2

Methods, systems, and devices for wireless communications are described. A communication device, which may be otherwise known as user equipment (UE), may identify a default modulation and coding scheme table and a preconfigured modulation and coding scheme table associated with a resource pool. The UE may receive, from a transmitting communication device, an indication of the preconfigured modulation and coding scheme table to use for upcoming sidelink communications. The UE may then communicate based on the preconfigured modulation and coding scheme table.
US11923969B2

A distributed hybrid algorithm that synchronizes the time and rate of a set of clocks connected over a network. Clock measurements of the nodes are given at aperiodic time instants and the controller at each node uses these measurements to achieve synchronization. Due to the continuous and impulsive nature of the clocks and the network, we introduce a hybrid system model to effectively capture the dynamics of the system and the proposed hybrid algorithm. Moreover, the hybrid algorithm allows each agent to estimate the skew of its internal clock in order to allow for synchronization to a common timer rate. We provide sufficient conditions guaranteeing synchronization of the timers, exponentially fast. Numerical results illustrate the synchronization property induced by the algorithm as well as its performance against comparable algorithms from the literature.
US11923966B2

A method for operating a transmitting device to communicate with a receiving device is described herein. The method includes the step of the transmitting device selecting a root index value from a set of root index values. The method further includes the step of the transmitting device generating a frequency domain Constant Amplitude Zero Auto-Correlation sequence based on the selected root index value. The method further includes the step of the transmitting device modulating the Constant Amplitude Zero Auto-Correlation sequence by a pseudo-noise sequence. The method further includes the step of the transmitting device generating an Orthogonal Frequency Division Multiplexing symbol, wherein the frequency domain Constant Amplitude Zero Auto-Correlation sequence modulated by the pseudo-noise sequence defines subcarrier values for the Orthogonal Frequency Division Multiplexing symbol. The method further includes the step of the transmitting device transmitting the Orthogonal Frequency Division Multiplexing symbol as an initial Orthogonal Frequency Division Multiplexing symbol of a preamble of a frame to the receiving device.
US11923965B2

A radio communication device capable of randomizing both inter-cell interference and intra-cell interference. In this device, a spreading section primarily spreads a response signal in a ZAC sequence set by a control unit. A spreading section secondarily spreads the primarily spread response signal in a block-wise spreading code sequence set by the control unit. The control unit controls the cyclic shift amount of the ZAC sequence used for the primary spreading in the spreading section and the block-wise spreading code sequence used for the secondary spreading in the spreading section according to a set hopping pattern. The hopping pattern set by the control unit is made up of two hierarchies. An LB-based hopping pattern different for each cell is defined in the first hierarchy in order to randomize the inter-cell interference. A hopping pattern different for each mobile station is defined in the second hierarchy to randomize the intra-cell interference.
US11923957B2

Maintaining network connectivity of aerial devices during unmanned flight is facilitated. An example method may include providing, to an access point of a radio access network (RAN) during flight of the unmanned aerial vehicle (UAV) on a flight route, channel allocation instructions for connecting the UAV to the radio access network via communication channels. The method may further include detecting an interference event associated with a portion of the flight route of the UAV during the flight. The method may further include adjusting, during the flight, the channel allocation instructions in response to detecting the interference event. The method may further include providing the adjusted channel allocation instructions to an access point of the radio access network during the flight.
US11923950B2

A relay device that relays between a plurality of radio devices that perform radio communication with terminals, and at least one radio control device that controls the radio devices, the relay device including: a replication necessity determination unit that determines whether or not to replicate a downlink signal received from the radio control device; a signal replicating unit that makes the same number of copies of a downlink signal as the number of destination radio devices only when the replication necessity determination unit determines that the downlink signal is to be replicated; and a downlink signal assignment unit that transfers a downlink signal that has been determined by the replication necessity determination unit as a signal that is not to be replicated, and downlink signals replicated by the signal replicating unit, to the radio devices respectively corresponding thereto.
US11923936B2

A scheme for beam training include methods, apparatuses, and computer readable media for establishing a communication link with a second user equipment (UE), transmitting first information associated with first beam configurations of the first UE to the second UE, receiving second information associated with second beam configurations of the second UE from the second UE, and performing a beam training process by transmitting a number of reference signals to the second UE, wherein the number is derived from the first information associated with the first beam configurations and the second information associated with the second beam configurations.
US11923935B2

A vehicle-mounted TBOX, an antenna real-time switching method and apparatus, and a non-transitory computer-readable storage medium are disclosed. The vehicle-mounted TBOX may include: a MCU control device, an antenna device and a measurement device, where the measurement device is configured to detect an incident wave power and a reflected wave power when the antenna device is in operation, and determine a real-time standing wave ratio at a position where the antenna device locates; the MCU control device is configured to communicate with the antenna device and the measurement device, determine an operation state of the antenna device according to the standing wave ratio, and send a control instruction to the antenna device; and the antenna device is configured to switch an internal antenna of the antenna device in real time according to the control instruction.
US11923924B2

A microcomponent massive MIMO array is presented. The microcomponent massive array includes a general purpose processor and an integrated power amplifier and transmitter device including a software defined radio (SDR) and a plurality of polar power amplifiers (PAs) disposed on a single integrated circuit, wherein the integrated power amplifier and transmitter device is in communication with the general purpose processor. The microcomponent massive MIMO array further includes an antenna array in communication with the integrated power amplifier and transmitter device.
US11923923B2

Methods and apparatuses in a wireless communication system. A base station (BS) includes a transceiver and a processor. The processor is configured to transmit a common beam to at least one user equipment (UE). The processor is also configured to configure the common beam to have a null area in a direction of a satellite earth station, the null area defining a space within a coverage area of the common beam in which a signal from the common beam is suppressed.
US11923916B2

A system for transmitting power and data between two circuit boards may include a fixed circuit board having a primary coil and a rotatable circuit board having a secondary coil. The system may further include a sensor in communication with the secondary coil of the rotatable circuit board. The fixed circuit board's primary coil may be inductively coupled to the secondary coil and may provide power and receive data from the sensor when inductively coupled to the secondary coil.
US11923913B2

Provided is a satellite pointing system and a satellite pointing method of an automatic satellite tracking antenna using auxiliary LNBs including: an antenna unit configured by coupling a main feeder receiving a satellite broadcast signal and two or more auxiliary feeders to an antenna and a controller tracking a location of a target satellite by analyzing strength of each satellite signal received through the auxiliary feeders and generating a control signal for controlling a pointing direction of the antenna unit based on location information of the tracked target satellite.
US11923912B2

A measurement method includes: determining first information, where the first information includes at least one of the following: a measurement quantity of a cell in which a terminal device is located that is obtained by the terminal device through measurement and information related to a movement velocity of the terminal device, where the measurement quantity indicates at least one of SINR, RSRP, and RSRQ; and determining a measurement periodicity based on the first information and a first correspondence, where the first correspondence indicates that the measurement periodicity is related to at least one of the measurement quantity and the movement velocity.
US11923904B2

An electronic device may include a photonics-based phased antenna array that conveys wireless signals at frequencies greater than 100 GHz. In a transmit mode, the array may transmit signals using the first and second optical signals. In a receive mode, the array may receive signals using the optical signals. In a passive mode, the array may reflect incident wireless signals as reflected signals. Photodiodes in the array may be controlled to exhibit output impedances that are mismatched with respect to input impedances of radiating elements in the array. Different mismatches can be used across the array or as a function of time to impart different phase and/or frequency shifts on the reflected signals. The phase shifts may be used to encode information into the reflected signals and/or to form a signal beam of the reflected signals.
US11923898B2

Local birefringence is determined from a scatter signature of a birefringent waveguide. Four copies of a Rayleigh scatter time delay domain signature of the fiber are collected from two orthogonal polarization received states and from two orthogonal polarization launched states to form a Jones transfer matrix. Obtaining the Jones transfer matrix for the waveguide eliminates the need to align the instrument polarization launch state to the birefringence axes. Birefringence is determined from an autocorrelation of a polarization state averaged function calculated from the transfer matrix terms. Alternatively, the transfer matrix is rotated until fast and slow eigenvectors are separated, fast and slow amplitude functions are generated, and a cross-correlation is performed on the fast and slow amplitude functions in order to determine the birefringence. Because the shift is determined at a high signal-to-noise level with improved sensitivity to the spectral shift, the local birefringence is determined more accurately.
US11923893B2

Aspects of the subject disclosure may include, for example, a device having an input port and multiple output ports adapted for connection to multiple passive optical network (PON) segments. The device includes an optical power splitting device in communication between the input port and the multiple output ports and adapted to provide divided portions of an optical signal received at the input port to the PON segments via the output ports. The device includes optical delay devices in optical communication between the optical power splitting device and at least a portion of the multiple output ports. The optical delay devices provide distinguishable delay values, that delay the divided portions of the optical signal, the distinguishable delay values facilitating associations of the PON segments to the output ports based on optical time domain reflectometry (OTDR) measurements obtained via the input port. Other embodiments are disclosed.
US11923892B2

Systems and methods are provided for updating data in a computer network. An exemplary method includes: scanning to capture a first set of signals; identifying from the first set of received signals a second set of signals having on times longer than a specified minimum dwell time; providing a plurality of signal profiles associated with a plurality of pulsed patterns of a signal of interest; identifying from the second set of signals a third set of signals that match at least one of the signal profiles; receiving demodulated data regarding the third set of signals; obtaining characteristic information for each of the third set of signals; verifying for each of the third set of signals their relevant information; determining whether the verification of the third set of signals produced a match; and upon determining of the match, providing an indication of a signal of interest.
US11923889B2

Various embodiments include methods and systems having detection apparatus operable to cancel or reduce leakage signal originating from a source signal being generated and transmitted from a transmitter. A leakage cancellation signal can be generated digitally, converted to an analog signal, and then subtracted in the analog domain from a received signal to provide a leakage-reduced signal for use in detection and analysis of objects. A digital cancellation signal may be generated by generating a cancellation signal in the frequency domain and converting it to the time domain. Optionally, an estimate of a residual leakage signal can be generated and applied to reduce residual leakage remaining in the leakage-reduced signal. Additional apparatus, systems, and methods can be implemented in a variety of applications.
US11923887B2

Systems, devices, and techniques for allowing communication between two or more computing devices are described herein. For example, a method includes receiving, by a first computing device configured to operate in accordance with a first wireless protocol, one or more data packets via one or more signals output by a second computing device according to a second wireless protocol, where the first computing device is not configured to operate in accordance with the second wireless protocol. Additionally, or alternatively, a method includes receiving, by a first computing device configured to operate in accordance with a first wireless protocol, at least one signal including a data packet, wherein a payload of the data packet comprises an indication of a symbol defined in accordance with a second wireless protocol.
US11923883B2

A clamping circuit that may be used to provide efficient and effective voltage clamping in an RF front end. The clamping circuit comprises two series coupled signal path switches and a bypass switch coupled in parallel with the series coupled signal path switches. A diode is coupled from a point between the series coupled signal path switches to a reference potential. In addition, an output selection switch within an RF front end has integrated voltage clamping to more effectively clamp the output voltage from the RF front end. Additional output clamping circuits can be used at various places along a direct gain signal path, along an attenuated gain path and along a bypass path.
US11923882B2

A hybrid communication device, an operation method thereof, and a communication system including the same are provided. The hybrid communication device includes a contact unit that includes an antenna for receiving a first communication signal and an electrode for receiving a second signal, a switch controller that includes a first switch and a second switch and controls the first switch and the second switch based on a change in capacitance of the electrode, and a signal processing unit that receives at least one of the first communication signal and the second communication signal from the contact unit via the first switch and processes the received signal. The first switch is connected to the contact unit, and the signal processing unit is connected to the first switch.
US11923873B2

In certain examples, methods and semiconductor structures are directed to an apparatus including a photon emitter such as an LED which operates over an emission wavelength range and a photo-voltaic device arranged relative to the photon emitter to provide index-matched optical coupling between the photo-voltaic device and the photon emitter for an emission wavelength range of the photon emitter.
US11923869B2

The devices, methods, and apparatuses of the present disclosure address a lack of parallelism in a typical approach by eliminating the static mapping of the two or more low-density parity check (LDPC) engines to a plurality of flash controllers. The devices, methods, and apparatuses of the present disclosure include a dynamic LDPC mapping to the plurality of flash controllers.
US11923865B2

This document describes techniques and apparatuses directed at detecting and preventing light-based injection attacks. In aspects, a computing device includes executable instructions of an input manager, an audio sensor having subtracting circuitry, and a light sensor. One or more processors executing instructions of the input manager is configured to receive and analyze signals generated by the audio sensor, the light sensor, and the subtracting circuit. Upon analysis, the input manager can detect and prevent light-based injection attacks.
US11923864B2

A phase-locked loop (PLL) is implemented to have another (second) PLL in place of the controlled oscillator. When a known frequency change in the frequency of the output clock is desired, in addition to changing a configuration of the PLL (first PLL), the configuration of the second PLL is also changed to cause the frequency of the output clock to change quickly. In various embodiments, the configuration of the second PLL is changed by changing the divisor of the feedback divider of the second PLL, the divisor in a pre-scaler in the second PLL, the control voltage of a VCO used in the second PLL, and any other point of user control in the second PLL.
US11923862B2

A first reception processing unit performs a process of receiving a first signal transmitted on a first transmission line, a second reception processing unit performs a process of receiving a second signal transmitted on a second transmission line, and an output speed control unit controls output speeds of the first signal and the second signal subjected to the reception process. A system switching unit selects and outputs the first signal or the second signal subjected to a reception process, and an output processing unit performs a process for output to another apparatus on the output from the system switching unit. A reception side clock output unit outputs a clock signal giving a processing timing of each process, and a clock frequency control unit adjusts a frequency of the clock signal giving the processing timing to the output processing unit. A frequency adjustment range calculation unit calculates an adjustment range of the frequency based on frequency deviation accuracy of the reception side clock output unit, frequency deviation accuracy of a transmission side clock output unit that outputs a clock signal giving a processing timing to a transmission process at a transmission apparatus on the transmission side, and a prescribed value of a frequency deviation.
US11923861B1

A voltage controlled oscillator (VCO), including: at least one second upper voltage rail; at least one second lower voltage rail; a ring of N cascaded inverters, wherein the set of N cascaded inverters are coupled between the at least one second upper voltage rail and the at least one second lower voltage rail; at least one first frequency band select circuit coupled between first upper voltage rail and the at least one second upper voltage rail; at least one second frequency band select circuit coupled between the at least one second lower voltage rail and first lower voltage rail; at least one first VCO frequency control circuit coupled between the first upper voltage rail and the at least one second upper voltage rail; and at least one second VCO frequency control circuit coupled between the at least one second lower voltage rail and the first lower voltage rail.
US11923838B2

Methods and devices to reduce the gate-induced drain/body leakage current (GIDL) generated in FET switch stacks when in OFF state are disclosed. Such devices include inductors as part of bias networks coupled with drain/source terminals and/or body terminals of the transistors within the switch stack. Hybrid approaches where resistors in combination with inductors are implemented as part the bias network are also described.
US11923836B2

An example includes a circuit including a first AND gate including a first input terminal, a second input terminal, and an output terminal, a second AND gate including a first input terminal, a second input terminal, and an output terminal, and a third AND gate including a first input terminal, a second input terminal, and an output terminal. The circuit also includes an OR gate including a first input terminal coupled to the output terminal of the first AND gate, a second input terminal coupled to the output terminal of the second AND gate, a third input terminal coupled to the output terminal of the third AND gate, and an output terminal.
US11923831B2

A bootstrapped switch includes a first transistor, a second transistor, a first capacitor, three switches, and a switch circuit. The switch circuit includes a first switch, a second switch, a second capacitor, and a resistor. The first transistor receives the input voltage and outputs the output voltage. The first terminal of the second transistor receives the input voltage, and the second terminal of the second transistor is coupled to the first terminal of the first capacitor. The control terminal of the first switch receives a clock. The second switch is coupled between the control terminal of the first transistor and the first switch. The second capacitor is coupled between the control terminal of the first switch and the control terminal of the second switch. The resistor is coupled between the control terminal of the second switch and a reference voltage.
US11923825B2

A semiconductor device and a method of manufacturing a semiconductor device are provided. The semiconductor device includes a carrier, an element, and a first electronic component. The element is disposed on the carrier. The first electronic component is disposed above the element. The element is configured to adjust a first bandwidth of a first signal transmitted from the first electronic component.
US11923824B2

Embodiments of this disclosure relate to reducing coupling between acoustic wave resonators. An isolation region of a substrate can be located between acoustic wave resonators. The isolation region can reduce capacitive coupling through the substrate between the acoustic wave resonators. In certain embodiments, the isolation region can be located between acoustic wave resonators of different filters to thereby increase isolation between the filters.
US11923819B2

Disclosed herein are embodiments of a wide bandwidth attenuator circuit having a tunable gain and tunable input impedance. In some embodiments, the wideband attenuator circuit comprises a serial capacitor shunted to ground by a plurality of circuit slices that are connected in parallel and switchably coupled to the output node of the attenuator. Each circuit slice has a tunable resistor that can be set to a conductive state (“enabled”) or a high impedance state (“disabled”) The number of enabled circuit slices that are connected in parallel may be used to program the attenuator gain and the attenuator impedance.
US11923817B2

Methods of making packaged surface acoustic wave devices are provided. The method may include forming a photosensitive resin coat over a cavity-defining structure encapsulating a surface acoustic wave device. The photosensitive resin coat may be formed using a spin-coating process, and then patterned to form a desired shape. Portions of the photosensitive resin may be removed from areas near the edge of the die, to facilitate separation of a wafer into individual dies. The method may also include forming a conductive structure using a plating process, where the conductive structure is located between the resin coat and the cavity defining structure. The photosensitive resin can include a phenol resin. The packaged surface acoustic wave devices made using a photosensitive resin coat may be relatively thin, and may have a height of less than 220 micrometers.
US11923812B2

A delay-compensating power management integrated circuit (PMIC) is provided. The PMIC includes a target voltage circuit configured to generate a target voltage that is utilized for generating a time-variant voltage to amplify an analog signal. The target voltage is generated based on a time-variant envelope of the analog signal but lags behind the time-variant envelope by a temporal delay(s) due to an inherent processing delay in the target voltage circuit. In this regard, a voltage processing circuit is provided in the target voltage circuit to generate a modified target voltage that is time-adjusted relative to the target voltage to substantially offset the temporal delay(s). By generating the time-variant voltage based on the modified target voltage, the time-variant voltage can be better aligned with the time-variant envelope of the analog signal, thus helping to reduce amplitude distortion when amplifying the analog signal.
US11923810B2

According to an example aspect of the present invention, there is provided an audio amplifier for use with a limited power source, the audio amplifier having: a power input terminal, a signal input terminal, a first DC to DC converter having an input connected to the power input terminal, an electrical energy storage device connected to an output of the first DC to DC converter, a second DC to DC converter having an input connected to the electrical energy storage device, an amplifier conductively connected to the output of the second DC to DC converter so as to be powered by the output of the second DC to DC converter, the amplifier also being conductively connected to the signal input terminal so as to receive a signal for amplification, and an output of the amplifier configured to be connected to a transducer such that the transducer may be driven by the amplifier.
US11923805B2

An oscillator arrangement is provided, comprising a relaxation oscillator having an active state and an inactive state; a bias current circuit portion arranged to provide a bias current to the relaxation oscillator during said active state; and an electronic switch arranged to isolate said relaxation oscillator from the bias current circuit portion when in said inactive state. The oscillator arrangement is arranged to store an internal voltage value associated with said bias current and the bias current circuit portion is arranged to use the stored internal voltage value to generate the bias current when the oscillator is started up from the inactive state to the active state.
US11923797B2

A motor driving device and an air conditioner having the same of the present disclosure limits the switching of a winding switching device when there is a possibility that the winding switching device is deteriorated, in order to increase the life of winding switching device of a motor and prevent malfunction.
US11923792B2

A computer-implemented method of predicting conditions of machines as well as a corresponding data processing system, computer program and computer-readable medium are disclosed. A technical specification of a machine is received. A data set including at least one current operational parameter of the machine is continuously received. A current load of the machine is continuously derived based on the provided technical specification and the received data set via a knowledge base. A current condition of the machine is continuously predicted by integrating over the derived current load and all previously derived current loads.
US11923790B2

A dielectric elastomer drive system A1 includes: a dielectric elastomer drive unit 1 provided with a dielectric elastomer layer 11 and a pair of electrode layers 12 flanking the dielectric elastomer layer 11; a power supply unit 5 configured to apply voltage to the dielectric elastomer drive unit 1; and a charge removal unit 2 configured to remove the charge stored in the dielectric elastomer drive unit 1. The configuration contributes to improving responsiveness.
US11923781B2

Provided is a power conversion device capable of suppressing an increase in cost and an increase in size of the device. A control board 113 that includes a connection unit 140 to which a signal connector 114 which transmits a signal is connected, a base member 120 that supports the control board 113 and has conductivity, and a case 110 that accommodates the control board 113 and the base member 120 and is connected to a ground is provided. The base member 120 includes a supporting portion 141 that is connected to one surface of the control board 113, and a first extending portion 130 of which one end is connected to the supporting portion 141 and the other end extends to the case 110 to be connected to the case 110. An electronic component 113a that generates noise is mounted on the control board 113, and the first extending portion 130 and the supporting portion 141 form an electrical path. The first extending portion 130 is arranged at a position at which a distance between the first extending portion and the electronic component 113a is shorter than a distance between the connection unit 140 and the electronic component 113a.
US11923780B2

There is provided a method of generating a control strategy based on at least three switching states of a matrix converter. The at least three switching states are selected based on at least a predicted output current, associated with each switching state, and a desired output current. In particular, mathematical transformations of a desired output current as well as output currents associated with each of a plurality of switching states are used to identify appropriate switching states.
US11923777B2

A power converter is provided. The power converter includes an LLC converter, a feedback circuit, a first driving circuit, and a second driving circuit. The LLC converter includes a first arm transistor group and a second arm transistor group. The feedback circuit provides a feedback signal corresponding to a current value of the LLC converter. The first driving circuit drives the first arm transistor group in response to the feedback signal and provides a control signal. The second driving circuit drives the second arm transistor group in response to the control signal.
US11923775B2

Provided is an in-vehicle power conversion device in which a smoothing capacitor includes a first electrical connection portion, a second electrical connection portion, a mechanical connection portion, and a smoothing capacitor main body. The first electrical connection portion is electrically connected to a first conductor. The second electrical connection portion is electrically connected to a second conductor. The mechanical connection portion functions as an additional electrical connection portion configured to fix the smoothing capacitor main body to the first conductor or the second conductor to be electrically connected to a fixing destination of the smoothing capacitor main body.
US11923774B2

A switching power supply apparatus includes switching elements that generate switching current flowing through an inductor, a switching control circuit, and an inductor current detection circuit that detects current flowing through the inductor. The inductor current detection circuit is composed of a time constant circuit including a detection capacitor and a detection resistor that are connected in series to each other and is connected in parallel to the inductor. A time constant of the inductor current detection circuit has characteristics varied with frequency or temperature. This compensates variation of equivalent series resistance of the inductor with respect to the frequency or variation thereof with respect to the temperature.
US11923766B2

The present invention provides an apparatus to actively balance the thermal performance of paralleled power devices, comprising: a monitoring unit for monitoring the temperature of each power device of the paralleled power devices to judge whether the temperature is out of balance; and a balancing unit for adjusting power loss of the power devices with monitored higher temperatures so as to achieve the balance of the thermal performance of the paralleled power devices.
US11923759B2

In a power conversion device for performing conversion from DC to AC, a positive-side capacitor and a negative-side capacitor with their connection point serving as a neutral point are provided between the positive and negative sides of the inputted DC power, and a switching pattern for specifying switching phases which are timings of ON/OFF driving switching elements of an inverter which outputs AC voltage having at least a positive-side potential, a negative-side potential, and a neutral point potential, is calculated so as to satisfy conditions for ensuring a modulation factor, eliminating harmonic components for respective orders of output voltage, ensuring a predetermined value for a phase difference between adjacent switching phases, and balancing voltage of the positive-side capacitor and voltage of the negative-side capacitor.
US11923757B2

An electronic device according to various embodiments may comprise a power converter configured to generate DC(direct current) power based on power obtained from outside, a state detecting unit, comprising a first photo coupler and a first diode electrically connected with the first photo coupler, configured to detect a state of a user device that comprises the electronic device or is electrically connected with the electronic device, a driving power supply unit configured to supply driving power for the user device based on the DC power, a power cut-off unit, comprising a first field effect transistor (FET), configured to cut off the DC power provided to the driving power supply unit according to the state of the user device, a control unit electrically connected with the state detecting unit.
US11923755B2

A lubricant supported electric motor includes a stator presenting a stator raceway, and a rotor movable relative to the stator about an axis. The rotor presents a rotor raceway disposed in radially spaced and opposing relationship with the stator raceway to define a gap therebetween. A lubricant is disposed in the gap for supporting the rotor relative to the stator. The stator raceway includes a bearing structure comprised of a plurality of hydrodynamic surfaces aligned in parallel relationship along the stator raceway and a plurality of hydrostatic pockets disposed in radially recessed relationship relative to the hydrodynamic surfaces.
US11923750B2

An electric pump drive motor three-phase stator assembly (1) includes three sets of stator segments (Si,j), configured in a ring about a stator axis (R). Each set includes n≥2 stator segments arranged in an n-fold rotational symmetry about the stator axis. Each stator segment includes a coil (3) having a first coil wire end and a second coil wire end. A plurality of 3n−3 connection wires (Wi,k) connect coils of a respective set of stator segments in series. A first and a second interposed stator segment are arranged in circumferential direction between the two connected coils of the respective set of stator segments. 3n−5 of the connection wires span across the first interposed stator segment at a distance (r1) to the stator axis and across the second interposed stator segment at a second distance (r2) to the stator axis (R). The second distance is larger than the first distance.
US11923726B2

This stator core is a stator core for a rotating electric machine of an axial gap type and includes a body portion formed by a compaction-molded body of soft magnetic powder whose surfaces are coated with insulating films, wherein the body portion is provided with one or a plurality of through holes.
US11923723B2

In the uninterruptible power supply, when the input switch is connected between the input terminal and the AC node of the converter and the fourth operation mode is selected, the input switch is turned off and the bypass switch is turned on, and the converter is controlled to convert the DC power of the battery into AC power and supply the AC power to the load via the bypass switch. Thus, even if the inverter is failed when the commercial AC power source is failed, it is possible to drive the load.
US11923722B1

Disclosed are systems and methods to provide continuous power to electrical devices using a portable power supply unit and a portable power charging unit. The portable power supply unit may include a first battery providing a first DC output, at least one first inverter for converting said first DC output to a first AC output for powering the electrical devices and for converting a first AC input to a first DC input for charging said first battery The portable power charging unit may include a second battery for providing a second DC output, a second inverter for converting said second DC output to a second AC output; and transmitting the second AC output to the first battery using charging ports on respective units such that said second AC output replaces said first AC output for powering said electrical devices, and replaces said first AC input for charging said first battery.
US11923719B2

The present disclosure relates to the field of vehicle technology and provides an energy recovery control method, a system, and a vehicle. The method is applied in a vehicle, and the vehicle comprises a drive motor and a battery electrically connected to the drive motor; a first energy recovery torque curve with respect to the drive motor is pre-configured in the vehicle, and the first energy recovery torque curve is used to indicate a correspondence relationship between vehicle speed and energy recovery torque of the drive motor. The present disclosure performs reduction on a first energy recovery torque curve by means of utilizing a reduction ratio, allowing energy recovery in accordance with a relatively low torque strength when a usable charge power of the battery is unable to satisfy a preset power requirement corresponding to the first energy recovery torque curve.
US11923716B2

Power converting devices (100) for power tools. One embodiment provides a power converter device (100) including a power source (200), a power converter (210) coupled to the power source (200), and an electronic processor (220) coupled to the power converter (210) to control the operation of the power converter (210). The power converter (210) is configured to receive an input power in one form or at a first voltage from the power source and convert the input power to an output power in another form or at a second voltage. The power converter (210) includes at least one wide bandgap field effect transistor controlled by the electronic processor (220) to convert the input power to output power.
US11923702B2

Methods and devices useful in performing magneto-inductive charging and communication in the absence of a cellular and/or internet network connection are provided. By way of example, an electronic device includes inductive charging and communication circuitry configured to receive a signal configured to induce a charging function based at least in part on an inductive coil coupled to the inductive charging and communication circuitry. Inducing the charging function includes charging an energy storage component of the electronic device. The inductive charging and communication circuitry is also configured receive an indication to switch from the charging function to a communication function. The communication function is based at least in part on the inductive coil. The inductive charging and communication circuitry is further configured establish a communication link between the electronic device using the inductive coil to transmit and receive communication signals.
US11923687B2

A bipole power transmission scheme with two independent converts, two power feed and one return conduit. During operation of the bipole power transmission scheme under abnormal conditions, when a return conduit is faulty and unable to provide a return current path, each converter controller is programmed to monitor the first power feed in the first transmission conduit and the second power feed in the second transmission conduit and, if the first power feed in the first transmission conduit and the second power feed in the second transmission conduit differ from one another, at least one converter controller modifies the power infeed from its corresponding power source to reduce the difference between the first power feed and the second power feed.
US11923679B2

A line module for use in a network device a plurality of circuits; and a power module comprising at least one circuit, wherein the power module is connected to the plurality of circuits and a Power Distribution Unit (PDU), and the at least one circuit of the power module is configured to shut down one or more of the plurality of circuits until a current threshold is no longer exceeded by a current drawn from a power feed connected to the first PDU.
US11923671B2

The present disclosure provides a system, apparatus and method for providing rapid shutdown for photovoltaic power systems and provides a system, apparatus and method for providing arc sensing for photovoltaic power systems. An AC current can be put on the DC bus to control PV panel shutdown. Local mean decomposition can be used to sense arcing on the DC bus.
US11923670B2

An arc detection device includes: a low-impedance circuit connected between a node on wiring connecting the positive electrode of a DC/DC converter and a plurality of DC/DC converters, extending from the positive electrode of the DC/DC converter, and branching toward the plurality of DC/DC converters and a node on wiring connecting the negative electrode of the DC/DC converter and the plurality of DC/DC converters, extending from the negative electrode of the DC/DC converter, and branching toward the plurality of DC/DC converters; an electric current detector that detects an electric current flowing through the low-impedance circuit; and an arc determiner that determines, on the basis of the electric current detected by the electric current detector whether an electric arc has occurred.
US11923668B2

The present disclosure provides a cable tray assembly comprising a cable tray splice, first cable tray section, and second cable tray section adjacent the first cable tray section with both sections having a bottom wall. The cable tray splice couples to the bottom walls. The cable tray splice may include at least two fasteners and a splice body configured to engage adjacent cable tray sections. The fasteners are configured to couple the splice body to the adjacent cable tray sections and include a spring producing a biasing force against the splice body. The disclosure provides a method to form a cable tray assembly including positioning the two cable tray sections end-to-end, positioning a splice body on bottom walls of the two cable tray sections, inserting a fastener through aligned openings in the splice body and the bottom walls, and applying a spring biasing force to the splice body.
US11923667B2

A cable tray of the ladder type configuration can be fabricated from soft solid curable polymer strips comprised of a thermosetting material. The curable polymer strips in a pliable state may be wound into strip rolls for storage and transportation to the installation site. At the installation site, the soft solid curable polymer strips can be deployed, molded into pliable formed rail sections, and transversely connected together by a plurality of rungs. The curing process can be completed by, for example, exposing the thermosetting material to a ultraviolet or visible light source to produce hardened rail sections of the ladder type cable tray.
US11923666B2

An electric power system emulator apparatus includes a plurality of nodes arrayed in first and second dimensions and a plurality of transmission path emulator circuits, respective ones of which are configured to be connected between adjacent ones of the nodes in the first and second dimensions. The apparatus further includes a control circuit configured to control the transmission path emulator circuits to emulate transmission paths of an electric power system. The control circuit may be configured to control the transmission path emulator circuits to emulate transmission lines and/or transformers. The transmission path emulator circuits may include respective power electronics converter circuits. The apparatus may further include source/load emulator circuits configured to be coupled to the nodes.
US11923665B2

Prefabricated electrical modules and system along with fabrication and construction methods are provided. The prefabricated electrical system includes multiple framed, prefabricated electrical modules of one or more types. The prefabricated electrical module disclosed may comprise one or more of a main service electrical module, a low-voltage module, a switch component module, and a receptacle component module. The casing of the interior components of the modules is weatherproofed and/or weatherized. Each of the modules includes a module exterior frame that accommodates the specialized elements of that particular module. Methods for fabrication of the modules are disclosed. Construction methods for installing the assemblies are also disclosed.
US11923661B2

A method of manufacturing a surface emitting laser according to an embodiment of the present disclosure includes the following two steps: (1) a step of forming a semiconductor stacked structure on a substrate, the semiconductor stacked structure including an active layer, a first DBR layer of a first electrical conduction type, and a second DBR layer of a second electrical conduction type, the first DBR layer and the second DBR layer sandwiching the active layer, the second electrical conduction type being different from the first electrical conduction type; and (2) a step of forming a mesa section at a portion on the second DBR layer side in the semiconductor stacked structure and then forming an annular diffusion region of the first electrical conduction type at an outer edge of the mesa section by impurity diffusion from a side surface of the mesa section, the mesa section including the second DBR layer, the mesa section not including the active layer.
US11923651B2

Techniques for improving gain equalization in C- and L-band (“C+L”) erbium-doped fiber amplifier (EDFAs) are provided. For example, the C- and L-band amplification sections of a C+L EDFA may be separated and configured in a parallel arrangement or a serial arrangement. For both the parallel and serial arrangements, the C- and L-band amplification sections may share a common gain flattening filter (GFF) or each amplification section may include and employ a separate GFF. Moreover, in some examples, an “interstage” L-band GFF may be located before or upstream of the L-band amplification section such that the L-band optical signal is gain-equalized or flattened prior to the L-band amplification section amplifying the L-band.
US11923650B2

A cable connection part structure includes a power control unit, a unit-side connector and a cable-side connector. The unit-side connector is connected to a power supply passage of an electric power control device and has a first connection terminal directed to a space below a unit case. The cable-side connector is connected to a power supply cable and has a second connection terminal connected to a first connection terminal from below the unit case. The cable-side connector has a connector case, and a bolt fixed to a connector case and having a shaft section passing upward through a part of the unit case from below. A nut is fastened to the shaft section of the bolt passing through the unit case from above.
US11923646B2

A high current and RPM-capable slip ring assembly for use in a selected application for transferring electricity between an exterior environment and an interior environment that includes a non-rotating electrical power member with concentric electrically conducting power transmission bands with wiring and a rotating electrical power member with concentric electrically conducting power transmission bands with wiring and a housing that surrounds both the non-rotating electrical power member and rotating electrical power member to align the first set of concentric electrically conducting power transmission bands and the second set of concentric electrically conducting power transmission bands to slide on one another during rotationally operation of the slip ring assembly.
US11923644B2

There are provided a flat plate; a substrate having a first side and a second side facing an inner surface of the flat plate; a first receptacle connector that is provided along the first side of the substrate and configured to be coupled to a first plug of a first cable via a first opening of the flat plate; and a second receptacle connector that is provided along the second side of the substrate and configured to be coupled to a second plug of a second cable via a second opening of the flat plate, a distance from the inner surface to the first side is shorter than a distance from the inner surface to the second side.
US11923638B2

A circuit board assembly includes an electrical connector mounted to a circuit board having a connector housing holding contacts in a contact array. A connector mount having a bracket is coupled to the mounting surface of the circuit board proximate to the mating edge. The electrical connector is movably coupled to the connector mount to move relative to the circuit board during mating with the mating electrical connector. The connector mount has a biasing member compressible along a compression axis parallel to the mating direction to allow the electrical connector to float in the mating direction relative to the circuit board. The electrical connector is movably coupled to the connector mount in a confined envelope in at least one floating direction perpendicular to the mating direction.
US11923630B2

An electrical connector assembly includes: a bracket; and at least one transmission assembly mounted to the bracket and including an internal printed circuit board (PCB), a board-mount connector connected to a first row of conductive pads disposed at a bottom end portion of the PCB, and a plug-in connector connected to a second row of conductive pads disposed at a front end portion of the PCB, wherein the PCB has a third row of conductive pads disposed at a rear end portion thereof.
US11923622B2

In accordance with some embodiments, there is provided an apparatus. The apparatus includes a conductive loop; a first conductive member electromagnetically coupled to the conductive loop and galvanically coupled to a radio frequency circuit; a second conductive member arranged across and electromagnetically coupled to the conductive loop; and a third conductive member arranged across and electromagnetically coupled to the conductive loop, the third conductive member being spaced apart from the second conductive member and electromagnetically coupled to the first conductive member.
US11923620B1

The present invention provides a compact ceramic chip antenna array based on ultra-wide band three-dimensional direction finding, comprising a dielectric substrate, a metal floor and a coplanar waveguide feeder, wherein the front face of the dielectric substrate is provided with three antenna units; three coplanar waveguide feeders are electrically connected to three antenna units, respectively; a plurality of impedance matching structures are further arranged on a front side and a back side of the dielectric substrate, respectively; the first and second impedance matching structures are respectively arranged on a right side of the first antenna unit and a left side of the third antenna unit; the first and second impedance matching structures are rectangular grooves etched on the metal floor; the third, fourth, fifth and sixth impedance matching structures are respectively arranged at both ends of the second coplanar waveguide feeder; and the fifth and sixth impedance matching structures are rectangular metal patches. The compact ceramic chip antenna array based on ultra-wide band three-dimensional direction finding provided by the present invention not only improves the dimension of target positioning, but also effectively reduces the space occupied by the antenna, and is suitable for wireless handheld devices in indoor accurate positioning.
US11923613B2

Examples disclosed herein relate to a node in a fixed wireless network. A controller determines optimal paths between nodes through relational calculations. Phase shifts are made to signals generated from one node to another according to the optimal path direction.
US11923608B2

An artificial magnetic conductor (AMC) antenna apparatus includes a ground plane and a flexible antenna element layer above the ground plane. The ground plane includes a conductive base surface, a plurality of memory metal wires, and a frequency selective surface (FSS) layer above the base surface, where the FSS layer includes a plurality of conductive patches separated from one another. Each of the memory metal wires electrically connects one of the conductive patches to the base surface. Each of the memory metal wires is rigid in a memory-shaped state, causing the FSS layer to be fixedly spaced from the base surface during operation of the AMC antenna apparatus. The memory metal wires are each flexible in a non-memory-shaped state, enabling the FSS layer to be collapsed towards the base surface when the antenna apparatus is stowed.
US11923607B2

A transition device for transitioning microwaves from an air-filled waveguide to an antenna. The air-filled waveguide is assumed to have an attachment flange, with the transition device having a compatible transition attachment flange. A rod has an upper portion extending upwardly through the flanges and a lower portion extending downwardly into the air-filled waveguide. The rode is made from a solid piece of high-dielectric material. The rod's outer surfaces of the upper portion (other than its end face) are metal plated, such that the upper portion provides a solid waveguide having a radiating aperture antenna.
US11923605B2

A millimeter-wave antenna for 5G applications is provided which includes an upper outer layer with a plurality of first radiating elements arranged spaced apart from each other on a first dielectric sublayer, a first inner layer arranged below the upper outer layer and having a plurality of through slots for conveying, towards the first radiating elements feeding signals to be radiated, a second inner layer arranged below and adjacent to the first inner layer having a dielectric sublayer on which there is arranged a plurality of conductive lines for conducting the feeding signals to be radiated towards the first radiating elements, a further inner layer arranged below and adjacent to the second inner layer, and a plurality of first through openings each formed on the further inner layer in a position corresponding to the position of an associated through slot.
US11923599B2

An antenna structure applied in a wireless communication device includes a metal frame, a first feed portion, a second feed portion, and a ground portion. The metal frame defines a first gap and a second gap. A portion of the metal frame positioned between the first gap and the second gap forms the first radiation portion. The first feed portion is electrically connected to the first radiation portion and a first signal feed point for feeding current and signals to the first radiation portion. The second feed portion is positioned apart from the first feed portion, electrically connected to the first radiation portion and a second signal feed point for feeding current and signal to the first radiation portion. The ground portion is positioned between the first feed portion and the second feed portion and is connected to the first radiation portion for grounding the first radiation portion.
US11923593B2

An antenna pedestal including: a body having an inner cavity defined by a wall and a top ledge; a Heating, ventilation, and air conditioning (HVAC) system to provide climate control for the inner cavity; and a door to access the inner cavity of the body, wherein the top ledge supports a mechanical steering.
US11923583B2

In a redox flow battery (RFB), the base solvent of the electrolytes tends to migrate across the barrier layer from one electrode toward the other. This can result in a volume and concentration imbalance between the electrolytes that is detrimental to battery efficiency and capacity. Compatible electrolytes can be mixed to rebalance the system, but for incompatible electrolytes mixing is not a viable option. To this end, the RFB herein includes a separator that recovers base solvent from the vapor phase of one of the electrolytes and returns the recovered base solvent to the other electrolyte to thereby reverse the imbalance.
US11923578B2

A method of maintaining a thermal balance in a solid oxide reversible fuel cell system comprising a solid oxide reversible fuel cell, an air intake for providing air to the solid oxide reversible fuel cell, and a steam reformer fluidly coupled to the solid oxide fuel cell for providing fuel to the solid oxide reversible fuel cell. The method comprising operating the solid oxide reversible fuel cell system in a forward mode in which the steam former receives natural gas and produces hydrogen gas and carbon monoxide to be provided to the solid oxide reversible fuel cell, and operating the solid oxide reversible fuel cell system in a reverse mode in which the steam reformer receives hydrogen gas and carbon dioxide from the solid oxide reversible fuel cell and produces natural gas and water.
US11923560B2

A secondary battery includes: an electrode plate including a main body portion and an electrode terminal portion protruding from the main body portion along a first direction; and a separator adhered to the electrode plate, wherein the main body portion of the electrode plate includes a central region located in a vicinity of a center in the first direction, a first region located on a side close to the electrode terminal portion with respect to the central region in the first direction, and a second region located on a side opposite to the first region with respect to the central region in the first direction, and adhesion strength per unit area between the electrode plate and the separator in the first region is higher than adhesion strength per unit area between the electrode plate and the separator in the second region.
US11923559B2

A battery assembly includes a protection member and a battery module including at least two batteries arranged side by side along a first direction and having a first outer surface and a second outer surface opposite to each other along a second direction. The protection member is in the form of a letter U with two vertical portions having different lengths, wherein a first protection section covers the end covers of batteries in the battery module, a part of a second protection section covers the first outer surface, and a third protection section abuts against an end cover of a battery corresponding to the second outer surface. The protection member can prevent the airflow, the flame and the like sprayed during thermal runaway, and control a thermal diffusion range during thermal runaway.
US11923552B2

Aspects of a modular clip for an electric battery module, a battery module comprising multiple such modular clips, and a battery pack comprising multiple battery modules are provided. The modular clip includes a housing configured to receive a plurality of battery cells. The modular clip may further comprise at least one interconnect plate. The modular clip may further comprise a retainer plate including a plurality of top cell recesses, each of the plurality of top cell recesses may comprise an opening to enable wire bonds between electrical terminals of a battery cell and the at least one interconnect plate. The battery module may comprise a plurality of wire bonds between at least one voltage sensing PCB and the at least one interconnect plate.
US11923547B2

This application relates to the battery field, and specifically, to a positive electrode plate, an electrochemical apparatus, and an apparatus. The positive electrode plate in this application includes a current collector and an electrode active material layer disposed on at least one surface of the current collector, where the current collector includes a support layer and a conductive layer disposed on at least one surface of the support layer. A single-sided thickness D2 of the conductive layer satisfies 30 nm≤D2≤3 μm. A thickness D1 of the support layer satisfies 1 μm≤D1≤30 μm. The support layer is made of a polymer material or a polymer composite material. The electrode active material layer includes electrode active materials, a binder, and a conductive agent.
US11923538B2

A negative electrode for a lithium secondary battery including a lithium metal layer; a first protective layer formed on a surface of the lithium metal layer; and a second protective layer formed on a surface of the first protective layer opposite the lithium metal layer, wherein the first protective layer and the second protective layer are different from each other in at least one property selected from the group consisting of ion conductivity and electrolyte uptake.
US11923534B2

A non-aqueous electrolyte secondary battery which is obtained using a lithium composite oxide having a layered structure and coated with a tungsten-containing compound in a positive electrode active substance, and which has a low initial resistance, and in which an increase in resistance following repeated charging and discharging is suppressed. The non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode and a non-aqueous electrolyte. The positive electrode includes a positive electrode active substance layer containing a lithium composite oxide having a layered structure. The lithium composite oxide includes a porous particle having a void ratio of not less than 20% but not more than 50%. The porous particle contains two or more voids having diameters that are at least 10% of the particle diameter of the porous particle. The surface of the porous particle is provided with a coating containing tungsten oxide and lithium tungstate.
US11923531B2

Systems and methods for water soluble weak acidic resins as carbon precursors for silicon-dominant anodes may include an electrode coating layer on a current collector, where the electrode coating layer is formed from silicon and pyrolyzed water-soluble acidic polyamide imide as a primary resin carbon precursor. The electrode coating layer may include a pyrolyzed water-based acidic polymer solution additive. The polymer solution additive may include one or more of: polyacrylic acid (PAA) solution, poly (maleic acid, methyl methacrylate/methacrylic acid, butadiene/maleic acid) solutions, and water soluble polyacrylic acid. The electrode coating layer may include conductive additives. The current collector may include a metal foil, where the metal current collector includes one or more of a copper, tungsten, stainless steel, and nickel foil in electrical contact with the electrode coating layer. The electrode coating layer may be more than 70% silicon.
US11923530B2

An electrochemical device includes a cathode, a separator and an anode. The cathode includes a cathode current collector, a first cathode active material layer including a first cathode active material, a second cathode active material layer including a second cathode active material, and an insulating layer. The first cathode active material layer is disposed between the cathode current collector and the second cathode active material layer, and the first cathode active material layer is disposed on a first region of a surface of the cathode current collector facing an anode active material layer of the anode, and the thickness of the first cathode active material layer is greater than Dv50 of the first cathode active material. The insulating layer is disposed on a second region of the surface of the cathode current collector not facing the anode active material layer of the anode.
US11923513B2

An ultrasonic solid-state lithium battery with built-in ultrasonic vibrating effect, including a battery case; and a positive electrode, a negative electrode and solid electrolyte installed on the battery case. A built-in ultrasonic vibrating module is provided within the positive electrode and/or negative electrode and/or solid electrolyte. The ultrasonic vibrating module has an ultrasonic vibrating element and an insulating layer covering the peripheral surfaces of the ultrasonic vibrating element. Wiring terminals electrically connected with the ultrasonic vibrating element are provided on or above a top end of the positive electrode and/or negative electrode and/or solid electrolyte.
US11923511B2

A novel wound electrode assembly for a lithium oxyhalide electrochemical cell is described. The electrode assembly comprises an elongate cathode of an electrochemically non-active but electrically conductive carbonaceous material disposed between an inner elongate portion and an outer elongate portion of a unitary lithium anode. That way, lithium faces the entire length of the opposed major sides of the cathode. This inner anode portion/cathode/outer anode portion configuration is rolled into a wound-shaped electrode assembly that is housed inside a cylindrically-shaped casing. A cylindrically-shaped sheet-type spring centered in the electrode assembly presses outwardly to limit axial movement of the electrode assembly. In one embodiment, all the non-active components, except for the cathode current collector which is nickel, are made of stainless-steel. This provides the cell with a low magnetic signature without adversely affecting the cell's high-rate capability.
US11923501B2

A solid-state electrolyte for a multilayer solid-state electrochemical cell is described herein. The electrolyte comprises a lithium electrolyte salt and nanofibers of a cubic phase lithium lanthanum zirconium oxide (c-LLZO), and a polymer interspersed with the nanofibers and electrolyte salt. Electrochemical cells comprising the solid-state electrolyte, and solid-state cathodes comprising the nanofibers of c-LLZO are also described herein.
US11923500B2

A packaging material for batteries including a laminate in which at least a base material layer, a metal layer, and a sealant layer are laminated in order. The battery packaging material satisfies the relationships of: (A1−A2)≥60 N/15 mm; and (B1−B2)≥50 N/15 mm. A1 is a stress in elongation by 10% in the MD direction and B1 is a stress in elongation by 10% in the TD direction in the laminate, and A2 is a stress in elongation by 10% in the MD direction and B2 is a stress in elongation by 10% in the TD direction in the base material layer.
US11923499B2

The adhesion between metal foil serving as a current collector and a negative electrode active material is increased to enable long-term reliability. An electrode active material layer (including a negative electrode active material or a positive electrode active material) is formed over a base, a metal film is formed over the electrode active material layer by sputtering, and then the base and the electrode active material layer are separated at the interface therebetween; thus, an electrode is formed. The electrode active material particles in contact with the metal film are bonded by being covered with the metal film formed by the sputtering. The electrode active material is used for at least one of a pair of electrodes (a negative electrode or a positive electrode) in a lithium-ion secondary battery.
US11923497B2

Described herein, are battery separators, comprising the following: a microporous polymeric film; and an optional coating layer on at least one side of the microporous polymeric film, wherein at least one of the microporous polymeric film and the optional coating comprises an additive. The additive is selected from the group consisting of a lubricating agent, a plasticizing agent, a nucleating agent, a shrinkage reducing agent, a surfactant, an SEI improving agent, a cathode protection agent, a flame retardant additive, LiPF6 salt stabilizer, an overcharge protector, an aluminum corrosion inhibitor, a lithium deposition agent or improver, or a solvation enhancer, an aluminum corrosion inhibitor, a wetting agent, and a viscosity improver. Also, described herein are batteries, including lithium-ion batteries, comprising one or more of the described separators. Methods for making the battery separators are also described.
US11923484B2

An exemplary method of manufacturing a white light emitting device may include providing first LEDs and second LEDs operable to generate excitation light having a dominant wavelength in a range from 440 nm to 480 nm; providing a first photoluminescence material which generates light having a peak emission wavelength in a range from 500 nm to 590 nm; providing a second photoluminescence material which generates light having a peak emission wavelength in a range from 600 nm to 650 nm; disposing the second photoluminescence material over and into direct contact with the second LED; and disposing the first photoluminescence material over the first and second LEDs.
US11923481B2

A light-emitting diode (LED) chip with reflective layers having high reflectivity is disclosed. The LED chip may include an active LED structure including an active layer between an n-type layer and a p-type layer. A first reflective layer is adjacent the active LED structure and comprises a plurality of dielectric layers with varying optical thicknesses. The plurality of dielectric layers may include a plurality of first dielectric layers and a plurality of second dielectric layers of varying thicknesses and compositions. The LED chip may further include a second reflective layer that includes an electrically conductive path through the first reflective layer. An adhesion layer may be provided between the first reflective layer and the second reflective layer. The adhesion layer may comprise a metal oxide that promotes improved adhesion with reduced optical losses.
US11923473B1

A high efficiency configuration for a solar cell module comprises solar cells arranged in an overlapping shingled manner and methods for assembling solar cells in a shingled manner. Solar cells in the module are electrically connected in series by front side ribbons and separate rear side ribbons. The front-side ribbons have a smaller cross-sectional width while the rear-side ribbons are thinner and wider.
US11923471B2

An avalanche diode including a gain region and a readout structure including an n-type (p-type) region having electrically isolated segments each including implanted regions; a p-type (n-type) region; and a first electrode on each of the segments. The gain region includes a p-n junction buried between the n-type region and the p-type region: an n+-type region having a higher n-type dopant density than the n-type region; a p+-type region having a higher p-type dopant density than the p-type region; and the p-n junction between the n+-type region and the p+-type region. A bias between the first electrodes and a second electrode (ohmically contacting the p-type (n-type) region) reverse biases the p-n junction. Electrons generated in response to electromagnetic radiation or charged particles generate additional electrons m the gain region through impact ionization but the segmented region comprises a low field region isolating the gain region from the first electrodes.
US11923460B2

A semiconductor structure includes several semiconductor stacks over a substrate, and each of the semiconductor stacks extends in a first direction, wherein adjacent semiconductor stacks are spaced apart from each other in a second direction, which is different from the first direction. Each of the semiconductor stacks includes channel layers above the substrate and a gate structure across the channel layers. The channel layers are spaced apart from each other in the third direction. The gate structure includes gate dielectric layers around the respective channel layers, and a gate electrode along sidewalls of the gate dielectric layers and a top surface of the uppermost gate dielectric layer. The space in the third direction between the two lowermost channel layers is greater than the space in the third direction between the two uppermost channel layers in the same semiconductor stack.
US11923459B2

A thin film transistor and method of making the same, the thin film transistor including: a substrate; a word line disposed on the substrate; a semiconductor layer disposed on the substrate, the semiconductor layer having a source region, a drain region, and a channel region disposed between the source and drain regions and overlapping with the word line in a vertical direction perpendicular to a plane of the substrate; a hydrogen diffusion barrier layer overlapping with the channel region in the vertical direction; a gate dielectric layer disposed between the channel region and the word line; and source and drain electrodes respectively electrically coupled to the source and drain regions.
US11923455B2

A semiconductor device and method of forming the same are disclosed. The semiconductor device includes a fin structure, a gate electrode, a source-drain region, a plug and a hard mask structure. The gate electrode crosses over the fin structure. The source-drain region in the fin structure is aside the gate electrode. The plug is disposed over and electrically connected to the gate electrode. The hard mask structure surrounds the plug and is disposed over the gate electrode, wherein the hard mask structure includes a first hard mask layer and a second hard mask layer, the second hard mask layer covers a sidewall and a top surface of the first hard mask layer, and a material of the first hard mask layer is different from a material of the second hard mask layer.
US11923451B2

A semiconductor device includes an output-stage element and a detection element, each of the output-stage element and the detection element including: a channel-formation region deposited at an upper part of a drift region; a main electrode region deposited at an upper part of the channel-formation region; and a gate electrode buried via a gate insulating film in one or more first trenches in contact with the main electrode region, the channel-formation region, and the drift region, wherein the first trenches used in common with the detection element and the output-stage element extend in a planar pattern, and a plurality of second trenches extending in parallel to each other in a direction perpendicular to the first trenches interpose the detection element so as to separate the channel-formation region of the output-stage element and the channel-formation region of the detection element from each other.
US11923450B2

There is disclosed a method for manufacturing a MOSFET with lateral channel in SiC, said MOSFET comprising simultaneously formed n type regions comprising an access region and a JFET region defining the length of the MOS channel, and wherein the access region and the JFET region are formed by ion implantation by using one masking step. The design is self-aligning so that the length of the MOS channel is defined by simultaneous creating n-type regions on both sides of the channel using one masking step. Any misalignment in the mask is moved to other less critical positions in the device. The risk of punch-through is decreased compared to the prior art. The current distribution becomes more homogenous. The short-circuit capability increases. There is lower Drain-Source specific on-resistance due to a reduced MOS channel resistance. There is a lower JFET resistance due to the possibility to increase the JFET region doping concentration.
US11923447B2

A semiconductor device includes a substrate, an insulating layer provided over the substrate, a collection of metal particles exposed on the surface of the insulating layer, and a diamond layer provided on the surface of the insulating layer on which the metal particles are exposed. By controlling the surface density and particle size of the metal particles on the surface of the insulating layer, the surface density of diamond nuclei that are formed on the surface is controlled. Diamond grains are formed by crystal growth using the diamond nuclei as starting material, thereby forming a diamond layer. The control of the surface density of the diamond nuclei results in forming, by the crystal growth, the diamond grains with a grain size exhibiting a relatively high thermal conductivity in the crystal growth initial layer of the diamond layer and improving the thermal conductivity between the diamond layer and the substrate.
US11923441B2

Described is a method of manufacturing a gate-all-around electronic device. The method includes forming a thermal oxide layer though an enhanced in situ steam generation process in combination with atomic layer deposition of a low-κ layer. The thin thermal oxide layer passivates the interface between the silicon layer and the dielectric layer of the GAA. A passivation process after the deposition of the low-κ layer reduces the bulk trap and enhances the breakdown performance of the GAA transistor.
US11923430B2

A semiconductor device and a method of forming the same are provided. In one embodiment, the semiconductor device includes a semiconductor substrate, a plurality of channel regions including first, second, and third p-type channel regions as well as first, second, and third n-type channel regions, and a plurality of gate structures. The plurality of gate structures includes an interfacial layer (IL) disposed over the plurality of channel regions, a first high-k (HK) dielectric layer disposed over the first p-type channel region and the first n-type channel region, a second high-k dielectric layer disposed over the first n-type channel region, the second n-type channel region, the first p-type channel region, and the second p-type channel region; and a third high-k dielectric layer disposed over the plurality of channel regions. The first, second and third high-k dielectric layers are different from one another.
US11923429B2

A semiconductor device and method for forming the semiconductor device are provided. In some embodiments, a semiconductor substrate comprises a device region. An isolation structure extends laterally in a closed path to demarcate the device region. A first source/drain region and a second source/drain region are in the device region and laterally spaced. A sidewall of the first source/drain region directly contacts the isolation structure at a first isolation structure sidewall, and remaining sidewalls of the first source/drain region are spaced from the isolation structure. A selectively-conductive channel is in the device region, and extends laterally from the first source/drain region to the second source/drain region. A plate comprises a central portion and a first peripheral portion. The central portion overlies the selectively-conductive channel, and the first peripheral portion protrudes from the central portion towards the first isolation structure sidewall.
US11923424B2

An embodiment of a semiconductor device includes a semiconductor substrate, a first dielectric layer disposed over the upper surface of the semiconductor substrate, and a first current-carrying electrode and a second current-carrying electrode formed over the semiconductor substrate within openings formed in the first dielectric layer. A control electrode is formed over the semiconductor substrate and disposed between the first current-carrying electrode and a second current-carrying electrode and over the first dielectric layer. A first conductive element is formed over the first dielectric layer, adjacent the control electrode and between the control electrode and the second current-carrying electrode. A second dielectric layer is disposed over the control electrode and over the first conductive element. A second conductive element is disposed over the second dielectric layer and over the first conductive element.
US11923423B2

A novel metal oxide is provided. One embodiment of the present invention is a crystalline metal oxide. The metal oxide includes a first layer and a second layer; the first layer has a wider bandgap than the second layer; the first layer and the second layer form a crystal lattice; and in the case where a carrier is excited in the metal oxide, the carrier is transferred through the second layer. Furthermore, the first layer contains an element M (M is one or more selected from Al, Ga, Y, and Sn) and Zn, and the second layer contains In.
US11923417B2

Structures for a bipolar junction transistor and methods of forming a structure for a bipolar junction transistor. The structure includes a substrate having a well, a first terminal including a first raised semiconductor layer, a second terminal including a second raised semiconductor layer, and a base layer positioned in a lateral direction between the first raised semiconductor layer of the first terminal and the second raised semiconductor layer of the second terminal. The base layer has an overlapping arrangement with the well. The structure further includes a dielectric layer positioned in a vertical direction between the first terminal and the substrate, the second terminal and the substrate, and the base layer and the substrate.
US11923416B2

A semiconductor device includes: a substrate; a first source/drain region and a second source/drain region spaced apart from each other by a trench in the substrate; and a gate structure in the trench, wherein the gate structure includes: a gate dielectric layer formed on a bottom and sidewalls of the trench; a first gate electrode positioned in a bottom portion of the trench over the gate dielectric layer; a second gate electrode positioned over the first gate electrode; and a dipole inducing layer formed between the first gate electrode and the second gate electrode and between sidewalls of the second gate electrode and the gate dielectric layer.
US11923411B2

An integrated chip comprises a substrate, an isolation structure and a gate structure. The isolation structure is disposed in the substrate and enclosing an active region in the substrate. The active region comprises a source region and a drain region separated by a channel region along a first direction. The gate structure is disposed over the channel region and comprising a first gate electrode region and a second gate electrode region arranged one next to another laterally along a second direction perpendicular to the first direction. The first gate electrode region has a first composition, and the second gate electrode region has a second composition different than the first composition.
US11923402B2

Described are light emitting diode (LED) devices including a combination of electroluminescent and photo-luminescent active regions in the same wafer to provide LEDs with emission spectra that are adjustable after epitaxial growth. The LED device includes a multilayer anode contact comprising a reflecting metal and at least one transparent conducting oxide layer in between the metal and the p-type layer surface. The thickness of the transparent conducting oxide layer may vary for LEDs fabricated with different emission spectra.
US11923399B2

A micro light-emitting diode display panel includes a substrate, at least one light-emitting element, a reflective layer and a light-absorbing layer. The at least one light-emitting element is disposed on the substrate to define at least one pixel, and each light-emitting element includes micro light-emitting diodes. The reflective layer is disposed on the substrate and located between the micro light-emitting diodes. The reflective layer has cavities surrounding the micro light-emitting diodes, such that a thickness of a portion of the reflective layer close to any one of the micro light-emitting diodes is greater than a thickness of a portion of the reflective layer away from the corresponding micro light-emitting diode. The light-absorbing layer is at least disposed in the cavities of the reflective layer.
US11923398B2

An LED array comprises a first mesa comprising a top surface, at least a first LED including a first p-type layer, a first n-type layer and a first color active region and a tunnel junction on the first LED, a second n-type layer on the tunnel junction. The LED array further comprises an adjacent mesa comprising a top surface, the first LED, a second LED including the second n-type layer, a second p-type layer and a second color active region. A first trench separates the first mesa and the adjacent mesa, cathode metallization in the first trench and in electrical contact with the first and the second color active regions of the adjacent mesa, and anode metallization contacts on the n-type layer of the first mesa and on the anode layer of the adjacent mesa. The devices and methods for their manufacture include a thin film transistor (TFT).
US11923396B2

An integrated circuit includes a photodetector. The photodetector includes one or more dielectric structures positioned in a trench in a semiconductor substrate. The photodetector includes a photosensitive material positioned in the trench and covering the one or more dielectric structures. A dielectric layer covers the photosensitive material. The photosensitive material has an index of refraction that is greater than the indices of refraction of the dielectric structures and the dielectric layer.
US11923391B2

A moiré pattern imaging device includes a light-transmissive film and a light-shielding film. The light-transmissive film includes a plurality of imaging units and a light-incident surface and a light-emergent surface opposite to each other. The plurality of imaging units are disposed on the light-incident surface, the light-emergent surface, or a combination thereof and are arranged in two dimensions to form an imaging unit array. The light-shielding film includes a plurality of light-transmissive regions. The light-transmissive regions are arranged in two dimensions to form a light-transmissive array, and the light-shielding film is overlaid on the light-incident surface or the light-emergent surface. The light-transmissive array corresponds to the imaging unit array. The imaging unit array and the light-transmissive array together form a moiré pattern effect to generate an image magnification effect.
US11923385B2

A solid-state imaging device including: a semiconductor substrate having a first surface and a second surface opposed to each other, and including a photoelectric converter provided for each of pixel regions; an impurity diffusion region provided, for each of the pixel regions, in proximity to the first surface of the semiconductor substrate; and a contact electrode embedded in the semiconductor substrate from the first surface, and provided over and in contact with the impurity diffusion regions each provided for each of the pixel regions adjacent to each other.
US11923379B2

Provided is a method for preparing a display substrate. The method includes: providing a substrate, the substrate including a plurality of pixel island regions spaced apart and a plurality of bridge regions connecting adjacent pixel island regions; forming thin film transistors and first signal lines in the pixel island regions, and forming first connecting bridges in the bridge regions; and forming second signal lines, second connecting bridges, and a source/drain layer on the substrate by a one-time patterning process.
US11923376B2

An electronic device includes a sustaining layer, multiple substrates, multiple photoelectric units, multiple signal layers, multiple driving structures, and a constraining structure. The substrates are arranged on a contact surface of the sustaining layer. A first end edge of at least one substrate approaches a first end edge of the sustaining layer, and a first side edge of one substrate is adjacent to a second side edge of another substrate. The photoelectric units are arranged on the first or/and second surfaces of the substrates. The signal layers are arranged on the substrates and electrically connected to the photoelectric units. The driving structures are electrically connected to the substrates and disposed close to the first or second end edge of the sustaining layer. The constraining structure constrains the first or second end edge of the sustaining layer, and at least one driving structure is accommodated in the constraining structure.
US11923367B2

An integrated circuit (IC) device includes a semiconductor substrate having a first plurality of stacked semiconductor layers in a p-type transistor region and a second plurality of stacked semiconductor layers in a n-type transistor region. A gate dielectric layer wraps around each of the first and second plurality of stacked semiconductor layers. A first metal gate in the p-type transistor region has a work function metal layer and a first fill metal layer, where the work function metal layer wraps around and is in direct contact with the gate dielectric layer and the first fill metal layer is in direct contact with the work function metal layer. A second metal gate in the n-type transistor region has a second fill metal layer that is in direct contact with the gate dielectric layer, where the second fill metal layer has a work function about equal to or lower than 4.3 eV.
US11923358B2

A device comprises a first transistor, a second transistor, a first contact, and a second contact. The first transistor comprises a first gate structure, first source/drain regions on opposite sides of the first gate structure, and first gate spacers spacing the first gate structure apart from the first source/drain regions. The second transistor comprises a second gate structure, second source/drain regions on opposite sides of the second gate structure, and second gate spacers spacing the second gate structure apart from the second source/drain regions. The first contact forms a first contact interface with one of the first source/drain regions. The second contact forms a second contact interface with one of the second source/drain regions. An area ratio of the first contact interface to top surface the first source/drain region is greater than an area ratio of the second contact interface to top surface of the second source/drain region.
US11923340B2

A semiconductor package includes a package substrate on which a base chip is disposed. A first semiconductor chip is disposed on the base chip. A second semiconductor chip is disposed on the first semiconductor chip. An inner mold layer surrounds an upper surface of the base chip and respective side surfaces of the first semiconductor chip and the second semiconductor chip. A first outer mold layer is interposed between the package substrate and the base chip while covering at least a portion of a side surface of the base chip. A second outer mold layer is disposed on the first outer mold layer while covering at least a portion of a side surface of the inner mold layer. The second outer mold layer is spaced apart from the package substrate. The first outer mold layer and the second outer mold layer have different viscosities.
US11923326B2

A method of manufacturing a bump structure includes forming a passivation layer over a substrate. A metal pad structure is formed over the substrate, wherein the passivation layer surrounds the metal pad structure. A polyimide layer including a polyimide is formed over the passivation layer and the metal pad structure. A metal bump is formed over the metal pad structure and the polyimide layer. The polyimide is a reaction product of a dianhydride and a diamine, wherein at least one of the dianhydride and the diamine comprises one selected from the group consisting of a cycloalkane, a fused ring, a bicycloalkane, a tricycloalkane, a bicycloalkene, a tricycloalkene, a spiroalkane, and a heterocyclic ring.
US11923322B2

An apparatus and method for a frequency based integrated circuit that selectively filters out unwanted bands or regions of interfering frequencies utilizing one or more tunable notch or bandpass filters or tunable low or high pass filters capable of operating across multiple frequencies and multiple bands in noisy RF environments. The tunable filters are fabricated within the same integrated circuit package as the associated frequency based circuitry, thus minimizing R, L, and C parasitic values, and also allowing residual and other parasitic impedance in the associated circuitry and IC package to be absorbed and compensated.
US11923321B2

A memory die includes dielectric isolation rails embedded within a substrate semiconductor layer, laterally spaced apart along a first horizontal direction, and each laterally extending along a second horizontal direction that is perpendicular to the first horizontal direction, and alternating stacks of insulating layers and electrically conductive layers located over the substrate semiconductor layer. The alternating stacks are laterally spaced apart along the second horizontal direction by line trenches that laterally extend along the first horizontal direction. Arrays of memory stack structures are provided such that each array of memory stack structures among the arrays of memory stack structures vertically extends through a respective alternating stack. Each of the memory stack structures includes a respective vertical stack of memory elements and a respective vertical semiconductor channel.
US11923318B2

A method of manufacturing a semiconductor package includes the following steps. A backside redistribution structure is formed, wherein the backside redistribution structure comprises a first dielectric layer, and a redistribution metal layer over the first dielectric layer and comprising a dummy pattern. A semiconductor device is provided over the backside redistribution structure, wherein an active surface of the semiconductor device faces away from the backside redistribution structure, the semiconductor device is electrically insulated from the dummy pattern and overlapped with the dummy pattern from a top view of the semiconductor package. A front side redistribution structure is formed over the semiconductor device, wherein the front side redistribution structure is electrically connected to the semiconductor device. A patterning process is performed on the first dielectric layer to form a marking pattern opening exposing a part of the dummy pattern.
US11923317B2

Disclosed is a semiconductor device comprising a substrate, a first lower pattern group on the substrate and including a first key pattern and first lower test patterns horizontally spaced apart from the first key pattern, and a first upper pattern group on the first lower pattern group and including first pads horizontally spaced apart from each other and first upper test patterns between adjacent ones of the first pads. The first key pattern is configured to be used for a photography process associated with fabrication of the semiconductor device. The first pads are electrically connected to the first upper test patterns. One of the first pads vertically overlaps with the first key pattern.
US11923314B2

A semiconductor package includes a connection structure including a redistribution layer, a plurality of under bump metal layers electrically connected to the redistribution layer, a passivation layer which overlaps at least portions of side faces of the plurality of under bump metal layers, and includes a first trench disposed between under bump metal layers adjacent to each other, a surface mounting element which is on the under bump metal layers adjacent to each other, connected to the redistribution layer, and overlaps the first trench, and an underfill material layer that is between a portion of the passivation layer and the surface mounting element, and is in the first trench. The first trench extends in a first direction and includes a first sub-trench having a first width in a second direction, and a second sub-trench having a second width different from the first width in the second direction.
US11923313B2

The present disclosure relates to a radio frequency (RF) device that includes a mold device die and a multilayer redistribution structure underneath the mold device die. The mold device die includes a device region with a back-end-of-line (BEOL) portion and a front-end-of-line (FEOL) portion over the BEOL portion, and a first mold compound. The FEOL portion includes an active layer, a contact layer, and isolation sections. Herein, the active layer and the isolation sections reside over the contact layer, and the active layer is surrounded by the isolation sections. The first mold compound resides over the active layer without silicon crystal, which has no germanium content, in between. The multilayer redistribution structure includes redistribution interconnections and a number of bump structures that are at bottom of the multilayer redistribution structure and electrically coupled to the mold device die via the redistribution interconnections.
US11923310B2

A package structure and method for forming the same are provided. The package structure includes a first through via structure formed in a substrate and a semiconductor die formed below the first through via structure. The package structure further includes a conductive structure formed in a passivation layer over the substrate. The conductive structure includes a first via portion and a second via portion, the first via portion is directly over the first through via structure, and there is no conductive material directly below and in direct contact with the second via portion.
US11923305B2

Some embodiments include an apparatus having a structure with a surface which comprises tungsten. The apparatus has titanium-nitride-containing protective material along and directly against the surface. The structure may be a digit line of a memory array. Some embodiments include a method in which an assembly is formed to have a tungsten-containing layer with an exposed tungsten-containing upper surface. Titanium-nitride-containing protective material is formed over and directly against the tungsten-containing upper surface. Additional material is formed over the protective material, and is spaced from the tungsten-containing upper surface by the protective material. The additional material may comprise silicon nitride and/or silicon dioxide.
US11923303B2

A carrier comprises: a main body made of a material comprising a thermal conductivity of at least 380 W/(m K), wherein the main body comprises a mounting surface for mechanical and thermal connection with a component, wherein the main body comprises a recess which penetrates the main body along a first direction perpendicular to the main extension plane of the main body, an electrically insulating filler is arranged in the recess, which comprises a further recess penetrating the filler along the first direction, an inner wall of the filler surrounding the further recess is provided with an electrically conductive coating to form a via through the main body.
US11923301B2

A method of manufacturing a semiconductor device, including: forming a plurality of gate strips, each gate strip is a gate terminal of a transistor; forming a plurality of first contact vias connected to a part of the gate strips; forming a plurality of first metal strips above the plurality of gate strips; connecting one of the first metal strips to one of the first contact vias; forming a plurality of second metal strips above the plurality of first metal strips, wherein the plurality of second metal strips are co-planar, each second metal strip and one of the first metal strips are crisscrossed from top view; a length between two adjacent gate strips is twice as a length between two adjacent second metal strips, and a length of said one of the first metal strips is smaller than two and a half times as the length between two adjacent gate strips.
US11923298B2

A semiconductor device includes a first active pattern on a substrate; a first gate electrode crossing the first active pattern; source/drain patterns in an upper portion of the first active pattern and at opposite sides, respectively, of the first gate electrode; a first gate capping pattern on the first gate electrode; an interlayer insulating layer on the source/drain patterns; first and second active contacts penetrating the interlayer insulating layer and being respectively connected to the pair of source/drain patterns; and a first interconnection layer on the first and second active contacts. The first interconnection layer may include a first insulating structure covering a top surface of the second active contact; and a first interconnection line covering a top surface of the first active contact and extending on the first insulating structure, and covering a top surface of the first gate capping pattern between the first and second active contacts.
US11923297B2

Apparatus and methods for generating a physical layout for a high density routing circuit are disclosed. An exemplary semiconductor structure includes: a gate structure; a plurality of first metal lines formed in a first dielectric layer below the gate structure; at least one first via formed in a second dielectric layer between the gate structure and the first dielectric layer; a plurality of second metal lines formed in a third dielectric layer over the gate structure; and at least one second via formed in a fourth dielectric layer between the gate structure and the third dielectric layer. Each of the at least one first via is electrically connected to the gate structure and a corresponding one of the plurality of first metal lines. Each of the at least one second via is electrically connected to the gate structure and a corresponding one of the plurality of second metal lines.
US11923290B2

Embodiments disclosed herein include semiconductor devices with source/drain interconnects that include a barrier layer. In an embodiment the semiconductor device comprises a source region and a drain region. In an embodiment, a semiconductor channel is between the source region and the drain region, and a gate electrode is over the semiconductor channel. In an embodiment, the semiconductor device further comprises interconnects to the source region and the drain region. In an embodiment, the interconnects comprise a barrier layer, a metal layer, and a fill metal.
US11923286B2

A package substrate includes an insulating layer having a mounting surface; a wiring pattern extending in the insulating layer; and a chip bonding pad provided on the mounting surface of the insulating layer and connected to the wiring pattern, the chip bonding pad having a tapered shape in which a horizontal cross-sectional area thereof gradually decreases away from the mounting surface of the insulating layer in a vertical direction. A portion of the chip bonding pad closest to the mounting surface of the insulating layer has a horizontal length of about 20 micrometers (μm) to about 30 μm.
US11923285B2

An electronic device package and a method for manufacturing the same are provided. The electronic device package includes a circuit layer and an electronic component. The circuit layer includes a dielectric layer having an opening, and an electrical contact. A width of an aperture of the opening increases from a first surface toward a second surface. The electrical contact is at least partially disposed in the opening and exposed through the opening. The electronic component is disposed on the second surface and electrically connected to the circuit layer.
US11923278B2

A semiconductor module includes a semiconductor device and bus bar. The device includes an insulating substrate, conductive member, switching elements, and first/second input terminals. The substrate has main/back surfaces opposite in a thickness direction, with the conductive member disposed on the main surface. The switching elements are connected to the conductive member. The first input terminal, including a first terminal portion, is connected to the conductive member. The second input terminal, including a second terminal portion overlapping with the first terminal portion in the thickness direction, is connected to the switching elements. The second input terminal is separate from the first input terminal and conductive member in the thickness direction. The bus bar includes first/second terminals. The second terminal, separate from the first terminal in the thickness direction, partially overlaps with the first terminal in the thickness direction. The first/second terminals are connected to the first/second terminal portions, respectively.
US11923276B2

A semiconductor includes a carrier; a semiconductor element arranged on the carrier; a first row of terminals arranged along a first side face of the carrier; a second row of terminals arranged along a second side face of the carrier opposite the first side face; and an encapsulation body encapsulating the semiconductor element, wherein the semiconductor element comprises a first transistor structure and a second transistor structure, wherein the first row of terminals comprises a first gate terminal, a first sensing terminal coupled, and a first power terminal, wherein the second row of terminals, a second sensing terminal, and a second power terminal.
US11923271B2

A three dimensional Integrated Circuit (IC) Power Grid (PG) may be provided. The three dimensional IC PG may comprise a first IC die, a second IC die, an interface, and a power distribution structure. The interface may be disposed between the first IC die and the second IC die. The power distribution structure may be connected to the interface. The power distribution structure may comprise at least one Through-Silicon Vias (TSV) and a ladder structure connected to at least one TSV.
US11923269B2

An optical module includes an optoelectronic assembly and a heat spreader. The optoelectronic assembly includes a flat, rigid substrate, an array of electrical contacts positioned on a first portion of the substrate, and an optoelectronics assemblage that is electrically connected to the array of contacts and is positioned apart from the array of electrical contacts. The heat spreader is comprised of a thermally conductive material and comprises a second portion that is structurally connected to the first portion and a third portion that is thermally connected to the optoelectronics assemblage.
US11923261B2

A semiconductor chip is provided on a semiconductor circuit base on one surface of an insulating substrate. A reinforcement and balance base is provided on the one surface of the insulating substrate spaced to the semiconductor circuit base. The insulating substrate 4, the semiconductor circuit base, the semiconductor chip, and the reinforcement and balance base are sealed into a resin-molded sealing body. The sealing body has resin non-adhering portions.
US11923249B2

A semiconductor device in which fluctuation in electric characteristics due to miniaturization is less likely to be caused is provided. The semiconductor device includes an oxide semiconductor film including a first region, a pair of second regions in contact with side surfaces of the first region, and a pair of third regions in contact with side surfaces of the pair of second regions; a gate insulating film provided over the oxide semiconductor film; and a first electrode that is over the gate insulating film and overlaps with the first region. The first region is a CAAC oxide semiconductor region. The pair of second regions and the pair of third regions are each an amorphous oxide semiconductor region containing a dopant. The dopant concentration of the pair of third regions is higher than the dopant concentration of the pair of second regions.
US11923244B2

Embodiments of the present disclosure generally relate to subtractive metals, subtractive metal semiconductor structures, subtractive metal interconnects, and to processes for forming such semiconductor structures and interconnects. In an embodiment, a process for fabricating a semiconductor structure is provided. The process includes performing a degas operation on the semiconductor structure and depositing a liner layer on the semiconductor structure. The process further includes performing a sputter operation on the semiconductor structure, and depositing, by physical vapor deposition, a metal layer on the liner layer, wherein the liner layer comprises Ti, Ta, TaN, or combinations thereof, and a resistivity of the metal layer is about 30 μΩ·cm or less.
US11923236B2

A method for forming a semiconductor structure comprising a silicon-on-insulator layer structure with crystalline silicon oxide SiOx as the insulator material comprises: providing a crystalline silicon substrate having a substantially clean deposition surface in a vacuum chamber; heating the silicon substrate to an oxidation temperature To in the range of 550 to 1200 ° C.; supplying, while keeping the silicon substrate in the oxidation temperature, with an oxidation pressure Po in the range of 1·10−8 to 1·10−4 mbar in the vacuum chamber, molecular oxygen O2 into the vacuum chamber with an oxygen dose Do in the range of 0.1 to 1000 Langmuir; whereby a crystalline silicon oxide layer with a thickness of at least two molecular layers is formed within the silicon substrate, between a crystalline silicon base layer and a crystalline silicon top layer. Related semiconductor structures are described.
US11923232B2

A positioning apparatus includes a stage configured to hold a substrate, a first pin configured to hold an edge ring and a second pin separately provided from the first pin and configured to hold the edge ring. The positioning apparatus further includes a rotation mechanism configured to rotate the stage and the first pin, an elevating mechanism configured to raise and lower at least one of the first pin and the second pin and a detection mechanism configured to detect a position of an outer circumference of the substrate held by the stage and a position of an inner circumference of the edge ring held by the first pin.
US11923230B1

A 3D semiconductor device, the device including: a first level including a first single crystal layer, the first level including first transistors, where each of the first transistors includes a single crystal channel; first metal layers interconnecting at least the first transistors; a second metal layer overlaying the first metal layers; and a second level including a second single crystal layer, the second level including second transistors and at least one third metal layer, where the second level overlays the first level, where at least one of the second transistors includes a transistor channel, where the second level includes a plurality of DRAM memory cells, where each of the plurality of DRAM memory cells includes at least one of the second transistors, where the second level is directly bonded to the first level, and where the bonded includes metal to metal bonds.
US11923227B2

An electrostatic chuck includes an insulating base body including a predetermined surface, and an electrode inside the base body, which is layer shaped along the predetermined surface. An upper surface of the electrode facing a side where the predetermined surface is located and the base body are in contact. A gap which is rendered a vacuum or filled with a gas is interposed between a side surface of the electrode and the base body.
US11923224B2

A positioning member is a carrier positioning member that is fixed to a base and that positions, on the base, a carrier storing a plurality of plate-shaped loads such that front faces or rear faces thereof face the base. The positioning member comprises two front-side stoppers that come into contact with two opening edge parts being end parts of an opening in the carrier, and restrict movement of the carrier to a front side, and two rear-side stoppers that come into contact with two plate-shaped end parts formed on a rear side in the carrier, and restrict movement of the carrier to the rear side and movement in a direction vertical to the base.
US11923222B2

A substrate transfer device includes: a support part configured to support a substrate to be transferred and provided with a plurality of engagement portions which are engaged with an edge of the substrate on a first side of the substrate; a gripping part configured to move toward or away from the plurality of engagement portions and provided with a plurality of contact portions which come into contact with the edge of the substrate on a second side of the substrate when moving toward the plurality of engagement portions; a plurality of detection parts provided in the plurality of contact portions, respectively, and configured to detect distortion amounts of the plurality of contact portions; and a determination part configured to determine a gripping situation of the substrate based on detection results obtained by the plurality of detection parts.
US11923216B2

An apparatus and method for treating a substrate are provided. The apparatus includes at least one first process chamber configured to supply a developer onto the substrate; at least one second process chamber configured to treat the substrate using a supercritical fluid; a transfer chamber configured to transfer the substrate from the at least one first process chamber to the at least one second process chamber, while the developer supplied in the at least one first process chamber remains on the substrate; and a temperature and humidity control system configured to manage temperature and humidity of the transfer chamber by supplying a first gas of constant temperature and humidity into the transfer chamber.
US11923208B2

Provided is disclosure for embodiments providing delivery of chemicals for conditioning a brush offline, where the brush is not coupled to a machine that makes use of the brush to clean a surface of an object.
US11923201B2

Semiconductor device structures having metal gate structures with tunable work function values are provided. In one example, a first gate structure and a second gate structure formed on a substrate, wherein the first gate structure includes a first work function metal having a first material, and the second gate structure includes a second work function metal having a second material, the first material being different from the second material, wherein the first gate structure further includes a gate dielectric layer, a self-protective layer having metal phosphate, and the first work function metal on the self-protective layer.
US11923199B2

Aspects of the disclosure provide a method. The method includes forming a structure over a substrate, and forming a spacer layer on the structure, wherein the spacer layer has a recess. The method includes forming a mask layer over the spacer layer and in the recess, the mask layer including a first layer, a second layer and a third layer. The method includes patterning the third layer of the mask layer, and etching the first layer and the second layer of the mask layer to form an opening to expose the recess of the spacer layer, wherein the opening in the second layer has a first width; and. The method includes removing the second layer using a wet etchant, wherein the opening in the third layer has a second width, and the second with is greater than the first width.
US11923198B2

In a first aspect, the present disclosure relates to a method for forming a patterning mask over a layer to be patterned, the method comprising: (a) providing a first layer over a substrate, the substrate comprising the layer to be patterned, the first layer being capable to bond with a monolayer comprising a compound comprising a functional group for bonding to the first layer and a removable organic group, (b) bonding the monolayer to the first layer, (c) exposing the monolayer to an energy beam, thereby forming a pattern comprising a first area comprising the compound with the removable organic group and a second area comprising the compound not having the removable organic group, and (d) selectively depositing an amorphous carbon layer on top of the first area.
US11923195B2

A single crystal semiconductor includes a strain compensation layer; an amorphous substrate disposed on the strain compensation layer; a lattice matching layer disposed on the amorphous substrate and including two or more single crystal layers; and a single crystal semiconductor layer disposed on the lattice matching layer, the lattice matching layer including a direction control film disposed on the amorphous substrate and including a single crystal structure, and a buffer layer including a material different from that of the direction control film, the buffer layer being disposed on the direction control film and including a single crystal structure.
US11923194B2

A semiconductor device includes a semiconductor substrate having a first lattice constant, a dopant blocking layer disposed over the semiconductor substrate, the dopant blocking layer having a second lattice constant different from the first lattice constant, and a buffer layer disposed over the dopant blocking layer, the buffer layer having a third lattice constant different from the second lattice constant. The semiconductor device also includes a plurality of channel members suspended over the buffer layer, an epitaxial feature abutting the channel members, and a gate structure wrapping each of the channel members.
US11923189B2

A method of forming ferroelectric hafnium oxide (HfO2) in a substrate processing system includes depositing an HfO2 layer on a substrate, depositing a capping layer on the HfO2 layer, annealing the HfO2 layer and the capping layer to form ferroelectric hafnium HfO2, and selectively etching the capping layer to remove the capping layer without removing the HfO2 layer.
US11923187B2

A method includes transferring a wafer to a position over a wafer chuck; lifting a lifting pin through the wafer chuck to a first position to support the wafer; holding the wafer on the lifting pin using a negative pressure source in gaseous communication with an inner gas passage of the lifting pin; introducing a gas to a region between the wafer and the wafer chuck through an outer gas passage of the lifting pin, wherein in a top view of the lifting pin, the inner gas passage has a circular profile, while the outer gas passage has a ring-shape profile; and lowering the lifting to dispose the wafer over the wafer chuck.
US11923182B2

Devices and methods for mass spectroscopic analysis of particles are disclosed herein. An example device includes: a first irradiation unit configured to irradiate a particle with electromagnetic radiation to cause components of the particle to detach from the particle. The example device further includes a second irradiation unit configured to irradiate substantially simultaneously i) at least a part of the detached components, and optionally a residual core of the particle, with a first beam of electromagnetic radiation the first beam of electromagnetic radiation exhibiting a first intensity, and ii) at least a part of the residual core, of the particle with a second beam of electromagnetic radiation. The second beam of electromagnetic radiation exhibiting a second intensity, which is preferably larger than the first intensity. The example device further includes a mass spectrometer comprising an ion source region, a first detection channel, and optionally a second detection channel.
US11923181B2

A substrate processing apparatus capable of minimizing the effect of a filling gas in a lower space on the processing of a substrate includes: a substrate supporting unit; at least one ring surrounding the substrate supporting unit; a processing unit on the substrate supporting unit; and an exhaust unit connected to a reaction space between the substrate supporting unit and the processing unit, wherein a first gas in the reaction space is transmitted to the exhaust unit through a first channel, a second gas in a lower space below the substrate supporting unit is transmitted to the exhaust unit through a second channel, and the first channel and the second channel are separated by the at least one ring.
US11923164B2

An arc flash mitigation system includes a main circuit protector such as a high amperage overcurrent protection fuse, and an arc flash mitigation network connected in parallel to the main circuit protector. The arc flash mitigation network includes at least one semiconductor switch operable to provide a shunt current path to a low amperage arc mitigation fuse for a faster response time to certain circuit conditions than the main circuit protector otherwise provides. The semiconductor switch may be a silicon controller rectifier operatively responsive to a voltage drop across the main circuit protector in use.
US11923162B2

A fuse includes a stack, a flattened wire, and a terminal. The stack has multiple layers arranged to form steps. The stack has an upper stack with layers of a first size and a lower stack with layers of a second, larger size. The flattened wire is located between the upper stack and the lower stack. The terminal is connected to the flattened wire and includes multiple surfaces to cover the steps at one end of the stack.
US11923154B2

A trigger switch according to one or more embodiments may include a first conductive plate (movable electrode) movable in response to movement of a trigger receiving a depressing operation, and a second fixed electrode (fixed electrode) located adjacent to a movable range of the first conductive plate with a space in between. The second fixed electrode forms a capacitor together with the first conductive plate. The capacitor formed by the first conductive plate and the second fixed electrode has a capacitance that changes as the first conductive plate moves.
US11923140B2

A method of making a carbon-metal oxide composite electrode for a supercapacitor includes continuously injecting a carbon material solution into a coagulation solution, where the carbon material solution comprises a carbon source and a liquid, and the coagulation solution comprises a metal nitrate or chloride and an organic solvent. An extruded structure comprising the metal nitrate or chloride interspersed with carbon is formed from the continuous injection. The extruded structure is annealed under conditions sufficient to convert the metal nitrate or chloride to metal oxide. Thus, a composite structure comprising the metal oxide and the carbon is formed, where the metal oxide is uniformly dispersed within the composite structure.
US11923134B2

A flexible magnetic component can include a magnetizable powder including a rare earth element. The flexible magnetic component can also include a polymer binder. The flexible magnetic component can define a first surface and a second surface opposite the first surface. A first magnetic field adjacent to the first surface can have a field strength at least 3 times greater than a field strength of a second magnetic field adjacent to the second surface, and the flexible magnetic component can elongate greater than 20% before a permanent deformation occurs.
US11923129B2

Methods and systems for controlling a circuit designed to protect electrical equipment, in particular sensitive power grid equipment such as transformers, are disclosed. In particular, methods of local and remote control of operation of protection circuits are provided that allow for remote access to change an operational mode of such protection circuits, while ensuring that power grid equipment is protected locally regardless of any configuration instructions received from a remote or centralized facility. Override levels may be set to ensure power grid transformer protection, regardless of operational mode or remote instruction.
US11923126B2

Provided is a coil component and a method of manufacturing the coil component less prone to aggregation of metal fillers contained in an external electrode. The coil component includes: a base body; a conductor wound around a coil axis; and an external electrode provided on a surface of the base body and electrically connected to an end portion of the conductor, wherein the external electrode includes an electrode layer containing a plurality of first fillers, a plurality of second fillers, and a resin, wherein at least a part of the plurality of second fillers is bonded by metallic bond to at least adjacent one of the plurality of first fillers and/or at least adjacent one of the others of the plurality of second fillers, and wherein each of the plurality of second fillers has a flat shape.
US11923124B2

A coil component includes a body having one surface, and one end surface and the other end surface, respectively connected to the one surface and opposing each other, a support substrate embedded in the body, and a coil portion disposed on the support substrate and including first and second lead-out patterns respectively exposed from surfaces of the body. The first lead-out pattern is exposed from the one surface of the body and the one end surface of the body. The second lead-out pattern is exposed from the one surface of the body and the other end surface of the body. The body includes an anchor portion disposed in each of the first and second lead-out patterns.
US11923122B2

Systems, apparatuses, and methods are described for an inverter which receives a direct current (DC) input, and outputs an alternating current (AC) output. A high AC voltage is achieved by serially connecting AC outputs from inversion modules included in the inverter. Multiple inversion stages are serially connected in order to form the AC output. Windings around a common core of the inverter may cause ripple currents to be shared by the inversion modules. Utilizing a common core enables reducing low frequency ripple currents.
US11923118B2

A coil component includes a drum core including a winding core portion extending in a first direction and a pair of flange portions provided at both ends of the winding core portion. At least one flange of the pair of flange portions has at least one step or gradient portion. A terminal electrode is provided on the step or gradient portion, and a wire is wound around the winding core portion with an end bonded to the terminal electrode. The terminal electrode includes plural metal layers, an outermost layer of which is an Sn film having a flattened mounting surface. The flattened mounting surface overlaps the step or gradient portion when seen in a second direction perpendicular to the first direction.
US11923105B2

An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.
US11923099B2

An igniter apparatus which generates a high speed buoyancy induced vortex to funnel hydrogen and air from the surrounding onto the “igniter core” where an “igniter core” heats up to the auto ignition temperature by the exothermic catalytic oxidation of hydrogen on its surface. Water (vapor) is formed as the product, which inhibits the oxidation reaction, if not stripped away from the catalyst surface. The high velocity of the vortex ensures the stripping of the boundary layer of steam that is formed by the reaction, thus ensuring more active sites are available for hydrogen oxidation. The vortex is formed by channeling an upward draft into a vortex by guided fins. The upward draft is formed by a plate, which is also coated with a hydrogen recombination catalyst. The plate becomes hot by the same catalytic oxidation reaction in the presence of air containing hydrogen.
US11923087B2

Provided herein is an engagement and care support platform (“ECSP”) computer system including at least one processor in communication with at least one memory device for facilitating senior user engagement. The processor is programmed to: (i) register a user through an application, (ii) register a caregiver associated with the user through the application, (iii) generate a senior profile based upon user personal and scheduling data, (iv) build a daily interactive user interface that reflects the senior profile, (v) display the daily interactive user interface at a first client device associated with the user, (vi) cause the first client device to initiate a daily interaction prompt to the user, (vii) determine whether any user interaction was received in response to the daily interaction prompt, and (viii) transmit a daily update message to a second client device associated with the caregiver, including an indication of whether any user interaction was received.
US11923066B2

An athlete tracking system and method for tracking an athlete during training sessions. The system includes a mobile tracking device wearable around a portion of the athlete, and a training log server for maintaining an athlete profile that includes a training record updatable by the athlete device and a training plan supplied by a coach.
US11923065B2

Computer-implemented systems, computer-implemented methods, and tangible, non-transitory computer-readable media for detecting abnormal heart rhythms of a user performing treatment plan with an electromechanical machine. The system includes, in one embodiment, an electromechanical machine, one or more sensors, and one or more processing devices. The electromechanical machine is configured to be manipulated by a user while the user is performing a treatment plan. The one or more sensors are configured to determine one or more measurements associated with the user. The one or more processing devices are configured to receive, from the one or more sensors while the user performs the treatment plan, the one or more measurements associated with the user. The one or more processing devices also configured to determine, using one or more machine learning models, a probability that the one or more measurements indicate that the user satisfies a threshold for a condition associated with an abnormal heart rhythm. The one or more processing devices are further configured to perform one or more preventative actions responsive to determining that the one or more measurements indicate the user satisfies the threshold for the condition associated with the abnormal heart rhythm. The one or more preventative actions are determined using the one or more machine learning models.
US11923053B2

HIPAA-compliant computer security method and system for recording, using a video camera, electronic visual personal health information of at least two individuals, including an individual under care, and preventing unauthorized access of the user to the video information. The video is compared to physical attribute information of the individuals stored in the computer system's memory, and the individuals are identified by facial matching. The user's stored caseload has authorization profile information including access to individuals under care. The identified individuals are compared to the user's caseload information, and the user is granted access to part of the video of the individual under care, the video of the other individuals is blurred, and the resulting video is transmitted to the user's caseload for viewing. Data fields of an information request are populated using formatted data from the video information.
US11923047B2

A method and system for determining interaction sites between biosequences is described herein. A dataset of contact data for a plurality of biomolecule pairs is obtained to account their frequency of occurrence. Statistical weights are obtained for each frequency of occurrence. A statistical vector space (SRV) is decomposed through principal component decomposition. The r-vectors of the SRV are re-projected back to a new SRV with a new set of SR coordinates. A feature vector is generated and inputted into a predictor for outputting a likelihood of an interaction site. A method and system for determining significant attribute-value associations (AVAs) from relational datasets is also described. A frequency of occurrence of attribute value pairs and statistical weights may be obtained for each frequency of occurrence. Principal component decomposition and re-projection of AVA vectors may also be performed. The disentangle SR of AVAs could be used to identify AVA related to subgroups/classes.
US11923045B2

Provided herein are systems and methods for screening desirable biological variants using a high-throughput integrated system. The integrated system may be configured to input a plurality of parameters from functional studies of biological variants under applied conditions, in conjunction with integrated libraries of biological variants, and filter the inputs to produce desirable biological variants based on an input performance requirement. The system may output optimized strains, molecules, or novel molecules expected to have a desirable functional characteristic. Accordingly, the methods and systems disclosed herein enable multi-parametric studies of biological diversity and conditional diversity in systems biology.
US11923044B1

Techniques for predicting a protein sequence are described. An exemplary method includes receiving a request to predict a missing area of a protein's primary sequence and a corresponding three-dimensional position of the missing area; applying a machine learning model to backbone Cartesian coordinates of the protein's primary sequence and a protein vector of a representation of the protein's primary sequence including the missing area to predict a missing area of the protein primary sequence and a corresponding three-dimensional position for the missing area, wherein the machine learning model is selected from the group consisting of: an attention-based machine learning model, a bidirectional long short term memory-based model, and a convolutional neural network-based model; and outputting a result of the machine learning model.
US11923042B2

An apparatus includes a host and a memory device connected to the host through a bus. The bus is used to communicate a data clock controlling data write timing during a write operation executed by the memory device and a read clock controlling data read timing during a read operation executed by the memory device. The memory device performs first duty cycle monitoring that monitors a duty cycle of the data clock, generates a first result, and provides a timing-adjusted data clock, performs second duty cycle monitoring that monitors a duty cycle of the read clock, generates a second result, and provides a timing-adjusted read clock, calculates an offset of the read clock based on the timing-adjusted data clock, the result and the second result, and corrects a duty error of the read clock using a read clock offset code derived from the offset of the read clock.
US11923041B2

A device includes a memory array, bit line pairs, word lines, a modulation circuit and a control signal generator. The memory array has bit cells arranged in rows and columns. Each bit line pair is connected to a respective column of bit cells. Each word line is connected to a respective row of bit cells. The modulation circuit is coupled with at least one bit line pair. The control signal generator is coupled with the modulation circuit. The control signal generator includes a tracking wiring with a tracking length positively correlated with a depth distance of the word lines. The control signal generator is configured to produce a control signal, switching to a first voltage level for a first time duration in reference with the tracking length, for controlling the modulation circuit. A method of controlling aforesaid device is also disclosed.
US11923033B2

A semiconductor device includes: a first memory block having a first block pitch; and a second memory block belonging to a same plane as the first memory block, the second memory block located closer to a plane edge than the first memory block, the plane edge being an edge of the plane, wherein the second memory block has a second block pitch that is larger than the first block pitch.
US11923032B2

The present disclosure provides a circuit for detecting leakage between word lines in a memory device. The circuit includes a first and a second coupling capacitor. A first terminals of the first and second coupling capacitors are connected to a first word line and a second word line, respectively. The first terminals of the first and second coupling capacitors are also connected to a first and a second voltage supply, respectively. The circuit further includes a comparator, wherein a first input of the comparator is connected to a second terminal of the first coupling capacitor and a second input of the comparator is connected to a second terminal of the second coupling capacitor. The comparator is configured to send alarm signal when a differential voltage between the first input and the second input of the comparator is larger than a hysteresis level of the comparator.
US11923023B2

Methods, systems, and devices for debug capabilities of a memory system with a pin are described. An apparatus may include a memory system that includes a plurality of pins of a first type that are configured to communicate information as part of operating the memory system and a pin of a second type. The apparatus may also include a circuit coupled with the memory system, the circuit including a resistor that is coupled with the pin of the second type. The memory system may include a controller that selects a value for the resistor and generates a code as part of a memory management operation to determine one or more operating conditions of the memory system based on selecting the value. The memory system controller may also determine an error associated with the code based on generating the code and the selected value of the resistor.
US11923011B2

A storage device including a nonvolatile memory device that includes a nonvolatile memory cell array including a string including first and second memory cells stacked sequentially, and an OTP memory cell array that stores reference count values, the first and second memory cells respectively connected to first and second word lines; a controller including a processor that generates a read command for the first memory cell; a read level generator including a counter that receives the read command and calculates an off-cell count value of memory cells connected to the second word line, and a comparator that receives a first reference count value from the OTP memory cell array, compares the off-cell count value with the first reference count value to determine a threshold voltage shift of the second memory cell, and determines a read level of the first memory cell based on the threshold voltage shift.
US11923010B2

A method is described. The method includes performing the following on a flash memory chip: measuring a temperature of the flash memory chip; and, changing a program step size voltage of the flash memory chip because the temperature of the flash memory chip has changed.
US11923004B2

A system and method of storing and reading digital data, including providing a nanopore polymer memory (NPM) device having at least one memory cell comprising at least two addition chambers each arranged to add a unique chemical construct (or codes) to a polymer (or DNA) string when the polymer enters the respective addition chamber, the data comprising a series of codes; successively steering the polymer from deblock chambers through the nanopore into the addition chambers to add codes to the polymer to create the digital data pattern on the polymer; and accurately controlling the bit rate of the polymer using a servo controller. The device may have loading chamber(s) to load (or remove) the polymer into/from the deblock chambers through at least one “micro-hole”. The cell may be part of a memory system that stores and retrieves “raw” data and allows for remote retrieval and conversion. The cell may store multi-bit data having a plurality of states for the codes.
US11923003B2

Combinations of resistive change elements and resistive change element arrays thereof are described. Combinational resistive change elements and combinational resistive change element arrays thereof are described. Devices and methods for programming and accessing combinations of resistive change elements are described. Devices and methods for programming and accessing combinational resistive change elements are described.
US11923000B2

A data scrambling method for controlling a code density according to an exemplary embodiment of the present disclosure includes receiving a plain code which is a code to be stored in the non-volatile memory device and a storage address at which the plain code is recorded; determining a rank corresponding to the plain code, using an ET table including appearance frequency rank information corresponding to individual plain code; calculating an adjustment rank corresponding to the plain code, using the rank and a random number that is generated based on the address of storage address; determining a cipher code corresponding to the appearance frequency rank of the plain code, using the adjustment rank and an ECC table including rank information determined by an objective function for individual cipher code; and storing the cipher code in the storage address.
US11922998B2

A memory device includes a memory bank with a memory cell connected to a local bit line and a word line. A first local data latch is connected to the local bit line and has an enable terminal configured to receive a first local clock signal. A word line latch is configured to latch a word line select signal, and has an enable terminal configured to receive a second local clock signal. A first global data latch is connected to the first local data latch by a global bit line, and the first global data latch has an enable terminal configured to receive a global clock signal. A global address latch is connected to the word line latch and has an enable terminal configured to receive the global clock signal. A bank select latch is configured to latch a bank select signal, and has an enable terminal configured to receive the second local clock signal.
US11922993B2

A device includes an array of memory cells with a first word line coupled to at least a subset of the array of memory cells and control logic coupled to the first word line. The control logic to detect, within a queue, a first read command to read first data from a first page of the subset and a second read command to read second data from a second page of the subset. The control logic is further to cause a voltage applied to the first word line to move to a target value. The control logic is further to cause a page buffer to sense the first data from a first bit line coupled to the first page and to sense the second data from a second bit line coupled to the second page. The control logic is further to cause the first word line to be discharged.
US11922991B2

According to one embodiment, an information processing apparatus includes a connector into which a first-type semiconductor storage device operating with n types of power supply voltages or a second-type semiconductor storage device operating with m types of power supply voltages less than the n types of power supply voltages is capable of being placed. The apparatus checks whether or not a notch is formed at a predetermined position of a semiconductor storage device placed into the connector, and supplies the m types of power supply voltages to the semiconductor storage device when the notch is formed at the predetermined position.
US11922988B2

Disclosed are a DRAM device capable of storing charges for a long time and an operating method thereof. According to an embodiment, a DRAM device includes a channel region formed on a substrate, a gate insulating film region formed on the channel region, a floating gate region formed on the gate insulating film region, a transition layer region formed on the floating gate region, and a control gate region formed on the transition layer region and generating a potential difference with the floating gate region in response to a fact that a potential that is not less than a reference potential is applied and releasing at least one charge stored in the floating gate region or storing the at least one charge into the floating gate region, by generating a transition current due to the potential difference.
US11922987B2

A novel storage device is provided. The storage device includes a first wiring, a second wiring, and a first memory cell. The first memory cell includes a first transistor and a first magnetic tunnel junction device. One of a source or a drain of the first transistor is electrically connected to a first wiring. The other of the source or the drain of the first transistor is electrically connected to one terminal of the first magnetic tunnel junction device. Another terminal of the first magnetic tunnel junction device is electrically connected to the second wiring. The first transistor includes an oxide semiconductor in its channel formation region.
US11922984B2

A memory device includes a substrate including first and second regions, the first region having first wordlines and first bitlines, and the second region having second wordlines and second bitlines, a first memory cell array including first memory cells in the first region, the first memory cell array having volatility, and each of the first memory cells including a cell switch having a first channel region adjacent to a corresponding first wordline of the first wordlines, and a capacitor connected to the cell switch, and a second memory cell array including second memory cells in the second region, the second memory cell array having non-volatility, and each of the second memory cells including a second channel region adjacent to a corresponding second wordline of the second wordlines, and a ferroelectric layer between the corresponding second wordline of the second wordlines and the second channel region.
US11922982B1

Provided is a tape drive reel including a damping structure for reducing position error signals in a tape during operation. The tape drive reel includes a hub including a first flange and a second flange. At least one of the first flange and the second flange includes a damping layer and a single stiffener layer positioned thereon. The damping layer is positioned between the single stiffener layer and the at least one of the first flange and the second flange. The single stiffener layer is more rigid than the damping layer.
US11922980B1

According to one embodiment, a disk device includes a plurality of magnetic disks, a casing, a column, a rotary component, and a screw. The casing includes a base having an inner space in which the plurality of magnetic disks is accommodated, and a first cover attached to the base to close the space. The column with a screw hole, is located in the space and is attached to the base by being fitted into a recess formed in the base. The rotary component is located in the space, surrounds the column, and is configured to rotate about the column. The screw is fitted into the screw hole through the first cover.
US11922979B2

In accordance with an embodiment, a circuit is configured to vary an intensity of a drive current of a resistive heater element based on the digital control signal. The circuit includes and output circuit configured to control a respective slew rate and an electric energy dissipated in the resistive heater element independently of a resistance value of the resistive heater element.
US11922978B1

A method of improving a sound reproduction of a turntable, the includes rotatably coupling a stylus cartridge to a head shell of a tonearm; and mechanically communicating the stylus cartridge and a spindle of the turntable, whereby rotation of the stylus cartridge is guided by said mechanical communication so that the stylus cartridge remains tangent to a groove of a grooved disc rotating with the spindle.
US11922973B2

Described herein is a computer implemented method. The method includes displaying, on a display, a scene timeline including a time-ordered sequence of scene previews, each scene preview corresponding to a scene of a video production and having a display width that provides a visual indication of a duration of that scene. The method further includes displaying a canvas including a first visual element that is associated with the first scene, and in response to detecting selection of the first visual element from the canvas, causing a first visual element timing indicator to be displayed. The first visual element timing indicator is aligned with the scene timeline based on a first visual element start time and a first visual element end time.
US11922970B2

A method for controlling an electronic apparatus is disclosed. The method for controlling an electronic apparatus includes detecting a voice input of a user; based on detecting the voice input of the user, performing voice recognition with respect to the voice input of the user; outputting information corresponding to a result of the voice recognition; identifying a type of ambient noise detected by the electronic apparatus; and changing an output state of the information corresponding to the result of the voice recognition based on the type of the ambient noise.
US11922967B2

In one aspect, a method includes detecting a fingerprint match between query fingerprint data representing at least one audio segment within podcast content and reference fingerprint data representing known repetitive content within other podcast content, detecting a feature match between a set of audio features across multiple time-windows of the podcast content, and detecting a text match between at least one query text sentences from a transcript of the podcast content and reference text sentences, the reference text sentences comprising text sentences from the known repetitive content within the other podcast content. The method also includes responsive to the detections, generating sets of labels identifying potential repetitive content within the podcast content. The method also includes selecting, from the sets of labels, a consolidated set of labels identifying segments of repetitive content within the podcast content, and responsive to selecting the consolidated set of labels, performing an action.
US11922965B2

A direction-of-arrival estimation device for achieving direction-of-arrival estimation which is robust against an SNR and in which an application range of a learning model is specific is provided. The device includes: a reverberation output unit configured to receive input of a real spectrogram extracted from a complex spectrogram of acoustic data and an acoustic intensity vector extracted from the complex spectrogram, and output an estimated reverberation component of the acoustic intensity vector; a noise suppression mask output unit configured to receive input of the real spectrogram and the acoustic intensity vector from which the reverberation component has been subtracted, and output a time frequency mask for noise suppression; and a sound source direction-of-arrival derivation unit configured to derive a sound source direction-of-arrival based on an acoustic intensity vector formed by applying the time frequency mask to the acoustic intensity vector from which the reverberation component has been subtracted.
US11922962B2

A Unified Speech and Audio Codec (USAC) that may process a window sequence based on mode switching is provided. The USAC may perform encoding or decoding by overlapping between frames based on a folding point when mode switching occurs. The USAC may process different window sequences for each situation to perform encoding or decoding, and thereby may improve a coding efficiency.
US11922956B2

An apparatus for decoding an encoded audio signal, includes a spectral domain audio decoder for generating a first decoded representation of a first set of first spectral portions, the decoded representation having a first spectral resolution; a parametric decoder for generating a second decoded representation of a second set of second spectral portions having a second spectral resolution being lower than the first spectral resolution; a frequency regenerator for regenerating every constructed second spectral portion having the first spectral resolution using a first spectral portion and spectral envelope information for the second spectral portion; and a spectrum time converter for converting the first decoded representation and the reconstructed second spectral portion into a time representation.
US11922952B2

Implementations set forth herein relate to an automated assistant that can be customized by a user to provide custom assistant responses to certain assistant queries, which may originate from other users. The user can establish certain custom assistant responses by providing an assistant response request to the automated assistant and/or responding to a request from the automated assistant to establish a particular custom assistant response. In some instances, a user can elect to establish a custom assistant response when the user determines or acknowledges that certain common queries are being submitted to the automated assistant—but the automated assistant is unable to resolve the common query. Establishing such custom assistant responses can therefore condense interactions between other users and the automated assistant. Furthermore, as such interactions are more immediately resolved, the automated assistant can avoid wasteful consumption of computational resources that may otherwise occur during prolonged assistant interactions.
US11922940B2

A first data that identifies a first device is used to identify within a data store a one or more capabilities of the first device. When a voice input having one or more keywords that have been pre-associated within the data store to an operational problem associated with at least the first device is received, a system causes a state of at least the first device at a time at which the voice input is received to be identified, causes the one or more keywords, the one or more capabilities of the first device, and the state of at least the first device to be used to identify within the data store a set of instructions for interacting with at least the first device to solve the operational problem, and causes the set of instructions to be presented to a user.
US11922939B2

A system and method are disclosed for ignoring a wakeword received at a speech-enabled listening device when it is determined the wakeword is reproduced audio from an audio-playing device. Determination can be by detecting audio distortions, by an ignore flag sent locally between an audio-playing device and speech-enabled device, by and ignore flag sent from a server, by comparison of received audio played audio to a wakeword within an audio-playing device or a speech-enabled device, and other means.
US11922937B2

One or more computing devices, systems, and/or methods for detecting trigger phrases and transmitting electronic messages to devices are provided. For example, audio received via a microphone of a first device may be monitored. Responsive to detecting a first trigger phrase in a first audio segment identified during the monitoring, a first electronic message comprising instructions to activate a microphone function of a second device may be generated and the first electronic message may be transmitted to the second device. Responsive to detecting a second trigger phrase in a second audio segment identified during the monitoring, a second electronic message comprising instructions to activate a microphone function of a third device may be generated and the second electronic message may be transmitted to the third device.
US11922936B2

The present disclosure relates to a home appliance and an operating method thereof. The home appliance according to the present disclosure includes: a user input interface; a storage configured to store a database of a response history, and a controller configured to: in response to receiving an input requesting to perform a previous operation through the user input interface, verify whether a first operation, corresponding to the request for performing the previous operation, is present in the operation history; in response to there being the first operation, verify a type of a first command, mapped to the first operation, among commands included in the database; in response to the type of the first command being a first type, determine the first operation to be the previous operation; and in response to the type of the first command being a second type, generate a second operation corresponding to the first command, and determines the second operation to be the previous operation. Various other embodiments are also possible.
US11922921B1

A system for generating a custom audio experience that is configured receive a first audio sample of a first impulse response corresponding to an interior of a vehicle, generate a first convolution reverb from the first audio sample, receive a second audio sample of a second impulse response corresponding to an audio equipment of the vehicle, generate an impulse response module from the second audio sample, generate combination module based on the first convolution reverb and the impulse response module, receive a third audio sample from a user, modify the third audio sample based on the combination module to generate a modified third audio sample, receive an indication of user input to play the modified third audio sample, and cause a user device to output the modified third audio sample.
US11922915B2

An apparatus includes a sensor module configured for receiving sensed information indicative of a sensed signal. The sensed signal includes a source signal component and a source noise component. The apparatus also includes a reference module configured for reference information indicative of a reference signal. The reference signal also includes a reference noise component. The apparatus also includes a filter module configured as a fixed lag Kalman smoother. The filter module is configured for adaptively filtering the reference signal to generate an estimate of the source noise component. The apparatus also includes a processing module configured for calculating an output signal based on the sensed signal and the estimate of the source noise component. The apparatus also includes an interface module configured for transmitting an indication of the output signal. The filter module is further configured for, based on the output signal, tuning the Kalman smoother.
US11922912B2

An instrument playing apparatus has: a movable member configured to be displaced responsive to a playing operation of a user; a detection part formed from a magnetic or conductive body and disposed on the movable member; and a filter that includes a coil. The filter has a frequency response that changes depending on a distance between the detection part and the coil, and generates a detection signal from a reference signal.
US11922910B1

A digital audio workstation organizes musical information in a visually consistent manner, such that it is easier for the user to see and to manipulate the content in a song. The organization includes a multitrack music stream, which depicts multiple adjacent streams (or “tracks”) of musical content playing in parallel; a Play Bar, which is a visual plane intersecting the music stream; and two or more data layers, which are spatially aligned with the underlying musical stream, but each of which contains a specific type of musical data which can be viewed and manipulated in isolation. This approach to visual organization of music information has some major benefits to the user. Many different kinds of musical content and transformations can be depicted in a clear and consistent manner, making it easier for the user to see and manipulate the song.
US11922909B2

The present invention relates to an electric pickup device for a bagpipe drone stock. The present invention also relates to an electric pickup device for a bagpipe chanter stock. The invention also relates to an electric bagpipe comprising a blowstick, a bag, at least one drone stock having an electric pickup sensor within said drone stock and a chanter stock having an electric pickup device within said chanter stock.
US11922905B2

In an embodiment of the present invention, a method for displaying an image of a display device includes moving the image displayed on an image display region along a movement path including a first position and a second position during a period of time, wherein, during the period of time, a total time for which the image is located at the first position is greater than a total time for which the image is located at the second position.
US11922893B2

Improved methods for driving an active matrix of pixel electrodes controlled with thin film transistors when the voltage on a top electrode is being altered between driving frames. The methods described increase performance by providing smaller swings in the overall voltage between the top electrode and pixel electrode while reducing stress on the thin film transistor.
US11922891B2

A display device including: a display panel including first and second display areas, and including pixels in the first and second display areas; and a data driver to output data signals to the pixels through a channels arranged along a first direction, wherein the channels include a first channel group corresponding to the first display area and a second channel group corresponding to the second display area, wherein some of the pixels emit light in different colors and have a first pixel arrangement along the first direction, and based on channel selection information about the first or second channel groups, the data driver outputs first data signals in a first output order along the first direction corresponding to the first pixel arrangement through the first channel group, and outputs second data signals in a second output order different from the first output order through the second channel group.
US11922889B2

A display apparatus includes a display panel in which a plurality of pixels and a plurality of data lines and a plurality of sensing lines connected to the pixels are arranged, a first driving circuit connected to data lines and sensing lines arranged in a first pixel column and a second pixel column adjacent to the first pixel column, and a second driving circuit connected to data lines and sensing lines arranged in a third pixel column adjacent to the second pixel column and a fourth pixel column adjacent to the third pixel column.
US11922887B1

A display may include an array of pixels. Each pixel in the array includes an organic light-emitting diode coupled to associated thin-film transistors. The diode may be coupled to drive transistor circuitry, a data loading transistor, and emission transistors. The drive transistor circuitry may include at least two transistor portions connected in series. The data loading transistor has a drain region connected to a data line and a source region connected directly to the drive transistor circuitry. The data line may be connected to and overlap the drain region of the data loading transistor. The data line and the source region of the data loading transistor are non-overlapping to reduce row-to-row crosstalk.
US11922884B2

A display device includes: a first pixel including a first organic light emitting diode; an initialization voltage generator for generating a first initialization voltage to be supplied to an anode of the first organic light emitting diode; and a timing controller including a first lookup table in which a plurality of first initialization voltage values corresponding to a plurality of maximum luminances are recorded, the timing controller being configured to determine a value of the first initialization voltage, based on reception information on a target maximum luminance and the first lookup table.
US11922883B2

A pixel includes an organic light emitting diode (OLED), a pixel circuit, and first and second transistors. The OLD includes a cathode electrode connected to a second power source. The pixel circuit includes a driving transistor having a gate electrode initialized by a third power source. The driving transistor controls the amount of current flowing from a first power source to the second power source via the OLED. The first transistor is connected between a fourth power source and the second power source and an anode electrode of the OLED. The first transistor is turned on based on a scan signal is supplied to a scan line. The second transistor is connected between a data line and the pixel circuit. The second transistor is turned on when the scan signal is supplied to the ith scan line.
US11922870B2

An example method includes programming, based on image data of a frame of a plurality of frames and during a non-emission period of the frame, pixels of a plurality of pixels of a display of a computing device; causing pixels of the plurality of pixels to emit light during an emission period of the frame, wherein an amount of light emitted by the pixels during the emission period is based on the programming; and synchronizing operation of one or more sensors and operation of the plurality of pixels by at least causing the one or more sensors to emit, during a particular portion of the emission period of the frame, electromagnetic radiation through the display.
US11922866B1

A pixel includes: a first transistor including a gate electrode electrically connected to a first node, a second node to which a first power voltage for driving the light emitting element is applied, and a third node electrically connected to the light emitting element; a first emission control transistor having an on-off timing controlled by a first emission control signal; and a second emission control transistor having an on-off timing controlled by a second emission control signal. A time interval exists between a time at which the first emission control signal having a turn-on level is input such that a voltage of the second node is dropped from a bias voltage having a voltage level higher than a voltage level of the first power voltage and a time at which the second emission control signal having a turn-on level is input.
US11922864B2

A display device includes a controller, a power management circuit and N display modules. Each of the N display modules includes M driving circuits, and M display arrays respectively connected to the M driving circuits. Each of the M driving circuits is configured to drive a display array connected to the driving circuit, and each of the display arrays includes at least one indicator light. The power management circuit is configured to output a voltage determined by the voltage control signal to the display arrays to supply power to the display array. M driving circuits in each of the display modules are cascaded through serial control lines. The controller is configured to address M driving circuits and read data of M driving circuits through the serial control lines, and send information to the driving circuits through the sharing data line to control the driving circuits and the indicator light.
US11922863B1

A display panel and a pixel circuit thereof are provided. The pixel circuit includes a driving current generator, a pulse width signal generator, a voltage provider, and a current enabler. The driving current generator provides a driving current. The pulse width signal generator includes an output switch. The output switch is controlled by a control signal, and provides a pulse width signal according to the control signal. The voltage provider adjusts the control signal according to a data write-in signal and a pulse width modulation enable signal. The current enabler provides the driving current to a lighting component according to the pulse width signal and an amplitude modulation enable signal.
US11922860B2

Provided is a pixel driving circuit including a first circuit configured to control, in a data writing mode, a signal related to driving of one or more light-emitting elements, and a second circuit configured to supply, in a driving mode, power to the one or more light-emitting elements based on a signal transmitted from the first circuit.
US11922859B2

A novel display panel that is highly convenient or reliable is provided. The display panel includes a pixel comprising a pixel circuit and a display element, and the display element is electrically connected to the pixel circuit. The pixel circuit is supplied with a selection signal, an image signal, and a pulse width control signal, supplies an output potential, and determines, on the basis of the pulse width control signal, a period during which the output potential is supplied. The pixel circuit includes a first switch and a first transistor. The first switch supplies the image signal on the basis of the selection signal and determines the output potential on the basis of the image signal. The first transistor includes a first and second electrode, and a first gate electrode. The output potential is output from the first electrode, and the first gate electrode is supplied with the image signal.
US11922856B2

According to the present disclosure, there is provided a light transmissive display device including a conductor to which a voltage for changing transmittance of the dimming element and a voltage outputting an electromagnetic wave for communication are applied in a time division manner, and a light transmitting member that is provided with a conductor and transmits light passing through the dimming element. This configuration makes it possible to suppress a space occupied by the dimming element and the antenna in a configuration including the dimming element and the antenna.
US11922847B2

Disclosed are a display apparatus, a drive chip, and an electronic device. When determining that a disconnected signal line exists, a drive chip sends a control signal to a signal line repair module, so that a shift output end of a first shift unit corresponding to the disconnected signal line outputs an enable signal, so as to control a corresponding connection switch in a connection switch group to be turned on, to enable the disconnected signal line to be electrically connected to a repair line. The display apparatus may repair a disconnected signal line without being returned to a factory and a manual operation.
US11922843B2

A flexible display panel and a preparation method therefor, and a display device and a display module are provided. The flexible display panel includes a planar area, a first bending area, a second bending area and a corner bending area. The corner bending area is connected to a corner of the planar area and is connected between the first bending area and the second bending area, and is provided with a plurality of first hole groups, where the corner bending area is bent with a width of a first hole group in middle of the corner bending area increasing and a width of a first hole group in an edge area on a side of the corner bending area away from the planar area decreasing.
US11922829B2

This technology relates to a display mounted messaging system. The display mounted messaging system may include a light emitting diode (LED) display attached to a housing of a sensor. The housing of the sensor may rotate. The display mounted messaging system may also include an LED controller which is configured to selectively activate and deactivate at least one LED in the LED display, to provide a message in the direction of an intended recipient.
US11922828B2

Greeting devices are described herein. In some embodiments, the greeting device can include an elongate body having a first end portion defining a chamber, and a second end portion opposite the first end portion. A message module can be positioned at least partially within the chamber. The greeting device can further include a first arm pivotably coupled to a first side of the body, and a second arm pivotably coupled to a second side of the body opposite the first side. An actuation mechanism can be operably coupled to the body. When actuated, the actuation mechanism can be configured to: (i) pivot the first and second arms relative to the body in a first direction toward the message module; and (ii) move the message module in a first direction from the chamber to extend at least partially beyond the body.
US11922824B2

According to one embodiment, a method, computer system, and computer program product for personalizing playback of an audio stream is provided. The present invention may include sectioning the audio stream into one or more content blocks and one or more filler blocks; determining one or more topics associated with the one or more filler blocks; determining a level of complexity associated with the one or more filler blocks; determining a listener's level of interest in and level of comprehension of the one or more topics; based on the level of complexity, the level of interest, and level of comprehension corresponding to the one or more topics, assigning a playback speed to the one or more content blocks associated with the one or more topics; and modifying the one or more content blocks to play at the assigned playback speed.
US11922816B1

A system for managing a fleet of shared autonomous vehicles may comprise a plurality of specialized sub-systems. The sub-systems may coordinate to service requested rides using the vehicles. The system may comprise a reservation system configured to receive a request for a ride from a user device. The system may comprise a coordination system configured to determine a price for the requested ride. The system may comprise a routing system configured to determine a vehicle of the fleet to service the requested ride and/or a route for the requested ride. The determined vehicle may be caused to service the requested ride.
US11922815B2

A method for managing data traffic of customers and self-driving vehicles includes receiving a transport request by a requesting customer, processing the received transport request, and identifying, among the self-driving vehicles, a compliant vehicle compliant with the transport request. The method also includes identifying a compliant route, compliant with the transport request, and causing the compliant vehicle to perform a transport service over the identified compliant route according to said transport request. identification of a compliant vehicle, identification of a compliant route, and causation of the compliant vehicle to perform a transport service are based on information about the mobile communication network, information about the compliant vehicle, and information about a radio state in the mobile communication network between the customers, between the vehicles, and between the customers and the vehicles.
US11922810B1

A vehicle adjustment system includes one or more processors configured to receive data from one or more sensors coupled to a vehicle that is in a stationary position. The one or more processors are also configured to analyze the data to determine whether an object is within a buffer zone surrounding the vehicle while the vehicle is in the stationary position. In response to determining that the object is within the buffer zone while the vehicle is in the stationary position, the one or more processors are configured to provide control signals to one or more driving components of the vehicle to reposition the vehicle to an alternate position.
US11922809B2

A system for communicating information indicative of driving conditions, to a driver, using a smart ring are disclosed. An exemplary system includes a smart ring with a ring band having a plurality of surfaces including an inner surface, an outer surface, a first side surface, and a second side surface. The system further includes a processor, configured to obtain data from a communication module within the ring band, or from one or more sensors disposed within the ring band. The obtained data is representative of information indicative of one or more driving conditions to be communicated to the driver. The smart ring also includes a haptic module disposed at least partially within the ring band, and the module being configured to communicate information indicative of the one or more driving conditions.
US11922804B1

A method of utilizing basic safety messages (BSMs) to provide insight of traffic situations to a vehicle-to-everything (V2X) enabled vehicle includes one or more of the following: transmitting BSMs from on-road vehicles; forwarding V2X messages including BSMs to a multi-access edge computing (MEC) server; extracting data samples from the V2X messages including BSMs; generating statistical results from the extracted data samples; and visualizing the statistical results for a driver of the vehicle.
US11922801B2

A method, an apparatus, and a computer program product may be provided for requesting traffic data. The apparatus may determine at least one map area comprising road segments, said map area having at least one map area identifier, determine road segment identifiers for the road segments of the at least one map area, send to a data service, a request for traffic data, said request identifying the map area, and receive from the data service, a subtree data structure set, the subtree data structure set comprising a plurality of subtree data structures, said subtree data structures in the set corresponding to traffic ranges. The apparatus may associate a road segment in a corresponding traffic range based on the road segment identifier satisfying one subtree data structure of the traffic range and provide the traffic range as traffic data for the road segment to a navigation application.
US11922796B2

Embodiments propose methods and system for predicting the occurrence of critical alarms in response to the occurrence of less severe, non-critical alarms. It is proposed to use a machine-learning model trained to discern whether a non-critical alarm will be followed by a critical alarm within a particular time period, e.g. whether the non-critical alarm will develop into a critical alarm. Unlike existing alarm systems which are merely threshold based, this approach uses physiological data from a window of data. This window of data can be expected to carry more information than a simple breach of the threshold.
US11922790B2

A monitoring, control and configuration system that includes a local system, a mobile device application, and a server that is accessible by users via the mobile device application and a Software as a Service (SaaS) interface via a browser is disclosed. The local system contains a microprocessor, communications components and related software all of which enable communications with the server and external components coupled with the local system. The local system software and server software combine with the mobile application and website interface to enable a user to monitor, configure, and control external devices coupled with the local system and the local system itself via the server. The system replaces multiple disparate control devices with a single, configurable device and system. The system integrates multiple disparate devices and systems from multiple manufacturers. The system provides emergency alerts based on examination of information from external devices provided to the local system and the server.
US11922789B2

A reach and placement tool includes an eyepiece, an orientation sensor, a distance sensor, and a controller. The controller is configured to obtain a distance value and an orientation from the distance sensor and the orientation sensor when the reach and placement tool is directed towards a point of interest at a particular location. The controller is also configured to determine a coordinate of the point of interest using the distance value and the orientation, and compare the coordinate of the point of interest to a reach envelope to determine if the point of interest is within range of a particular reach apparatus.
US11922788B2

Avalanche transceiver, and associated systems and methods are disclosed herein. In one embodiment, a method for identifying a location of a victim buried in an avalanche includes: emitting a signal by a transmitting transceiver of the victim; receiving the signal by a receiving transceiver; and identifying an orientation from the receiving transceiver to the victim based on constructing a straight line from the receiving transceiver to the transmitting transceiver.
US11922787B1

An embodiment related to a system, comprising: a processor; a sensor; an image sensor; a display; and a communication module; wherein the processor is configured to measure a physiological characteristic of a passenger of a vehicle; capture an image of the passenger of a vehicle; process the physiological characteristic of the passenger and determine whether the physiological characteristic is outside a predefined threshold; process the image, via the processor comprising an image processing algorithm and artificial intelligence, for extracting a feature; detect the health emergency and a severity of the health emergency based on the feature extracted; generate an alert signal; display the alert signal and at least one of a detail of the health emergency of the passenger; and an action based on the health emergency and a severity of the health emergency. In an embodiment, the system is configured to be a component of the vehicle.
US11922783B2

A display includes two-integrated cameras. A first camera is situated in a top right corner of a front display surface of the display and a second camera is situated in a top left corner of the front display surface. The display is connected to a transaction terminal with the first camera focused on a bagging area associated with the transaction terminal and with the second camera focused on a staging area associated with the transaction terminal. Each camera captures images of items and the item images are streamed over a high-speed display port directly to the transaction terminal. The transaction terminal performs item recognition, item tracking, and auditing on the items based the item images during transaction processing at the transaction terminal.
US11922781B2

Systems and methods for providing, conducting and modifying Blackjack involving standard playing cards in which players form two player hands to compete against two dealer hands that are set according to a preset house way.
US11922780B2

Administrating a package of shuffled playing cards to prevent fraudulent card exchanges. The administrating system is configured to calculate places and a number of packages of shuffled playing cards at places of the backyard, the places of playing tables, places of carriers and the disposition place using information obtained by the loading step and unloading step and the administrating system calculates by every ID codes bases 1) places of packages registered by the registering step for registering to a data base of administrating system and a number of packages place by place from information obtained from the loading step and the unloading step. The administrating system is configured to recognize whether there is a lost package by comparing the information of all ID codes registered in registering steps with the ID codes at places of packages obtained at the calculating step from the loading step and the unloading step.
US11922778B2

Innovations in user interface (“UI”) features of an electronic gaming device, and in features of backend processing to implement the UI features, are presented. For example, control logic selects symbols to be displayed for dynamic symbols for reel strips used in the electronic gaming device. The symbols selected to be displayed for dynamic symbols differ between game types. An electronic gaming machine can be associated with different gameplay divisions, such as different wager levels. Different gameplay divisions can be associated with different states, such as being in a base game mode or a special event mode, or having different numbers of spins remaining in a special event mode. A user can switch between gameplay divisions, where a state is resumed when a user switches to a different gameplay division.