US10285320B2
A production management apparatus of a board production line, which can prevent malfunction of the board production device in a test production process, and appropriately maintain the production environment, including: a permission determination section that, before transition from a test production process, in which the inspection device inspects a regulated number of initial boards produced by the board production device as a target, to a later main production process, determines permission for performing an operation command received by the board production device, based on a detection state and a detection result of an initial board by an inspection device; and a processing management section that controls processing of the operation command in the board production device based on a determination result by the permission determination section, is provided.
US10285317B2
A board held by a board holding plate is heated by a heater, and after performing mounting processing of components in a region of the mounting regions of the board, a pressing process of using a pressing head to apply pressure to all the components mounted in the region at once while heating the board is performed, and a next mounting process of mounting components in a next region is performed while performing the pressing process. By performing the pressing process and the mounting process in parallel, waiting time for each process in the cycle of the mounting process and the pressing process is reduced, such that overall work time is reduced.
US10285307B2
An air-cooling heat dissipation device is provided for removing heat from an electronic component. The air-cooling heat dissipation device includes a supporting substrate, an air pump and a heat sink. The supporting substrate includes a top surface, a bottom surface, an introduction opening and a thermal conduction plate. The thermal conduction plate is located over the top surface of the supporting substrate and aligned with the introduction opening. The electronic component is disposed on the thermal conduction plate. The air pump is fixed on the bottom surface of the supporting substrate and aligned with the introduction opening. The heat sink is attached on the electronic component. When the air pump is enabled, an ambient air is introduced into the introduction opening to remove the heat from the thermal conduction plate.
US10285305B2
A heat dissipating system includes a wind tunnel, a first electronic element, and a second electronic element. The wind tunnel defines a top air inlet channel and a separated bottom, and a top air discharging channel and a separated bottom air discharging channel. Air entering the bottom air inlet channel dissipates heat produced by the first electronic element to the top air discharging channel, to flow out of the wind tunnel. Air entering the top air inlet channel flows to the bottom air discharging channel to dissipate heat produced by the second electronic element, this arrangement avoids heated air from one element being exhausted onto another element.
US10285302B1
A supporting base for servers of different types and sizes includes two sliding rails and a mounting apparatus. The supporting base includes sliding portions on each side and supporting brackets corresponding to the two sliding portions. When the two supporting brackets are unmounted, the supporting base and sliding rails have a first distance, and when the two supporting brackets are mounted to the two sliding portions, the two sliding rails have a second distance.
US10285297B2
A power system includes a chassis, a plurality of conductors disposed within the chassis, and apertures formed within the chassis to provide consistent access to power provided by the conductors by a modular power component when the modular power component is oriented in at least two orientations relative to the chassis. The modular power components are removable from the power system and may be implemented to provide AC or DC power at a surface. The modular power components rotate relative to the chassis to extend above the surface when in use or to be flush with the surface when not in use.
US10285295B2
Various components of an electronic device housing and methods for their assembly are disclosed. The housing can be formed by assembling and connecting two or more different sections together. The sections of the housing may be coupled together using one or more coupling members. The coupling members may be formed using a two-shot molding process in which the first shot forms a structural portion of the coupling members, and the second shot forms cosmetic portions of the coupling members.
US10285292B2
A transparent component of an electronic device having a nano-crystalline layer is disclosed. The nano-crystalline layer may be formed as a series of layers separated by or interspersed with one or more other layers including a non-crystalline or amorphous material. The series of layers may also be interspersed with one or more anti-reflective layers configured to reduce optical reflections off the transparent component. The nano-crystalline layer may be formed by a deposition process or by an ion-implanting and annealing process to form crystals having a size of less than 10 nanometers. The protective coatings may be utilized on portions of an electronic device, such as a housing or a cover glass, to protect the electronic device from scratching and/or damage caused by impact.
US10285288B1
An electronic device with anti-disassembly structure includes a top cover having a first set of serrated teeth and a first through hole, a fastener receiver having a posting head and a posting body, a fixed disk having a fourth set of serrated teeth, an elastic member, a bottom cover having a second through hole, and a fastener. The posting head has a second set of serrated teeth and a third set of serrated teeth. When the top cover is separated from the bottom cover, the elastic member is compressed by the external force, and the second set of serrated teeth is separated with the first set of serrated teeth, the third set of serrated teeth engage with the fourth set of serrated teeth, and the fastener is rotated to detached from the bottom cover.
US10285273B1
A dummy memory board includes a substrate, a connecting finger, a plurality of light emitting diodes, and an electrical circuit. The substrate has a front surface and a back surface, and is provided with at least one dummy memory region. The connecting finger is close to a lower edge of the substrate for inserting into a memory slot. The light emitting diodes are on the substrate and close to the upper edge of the front surface and the back surface. The electrical circuit is on the substrate for connecting the light emitting diodes to the connecting finger. Thus, power from the memory slot is transferred to the light emitting diodes through the connecting finger, and the light emitting diodes are turned on to demonstrate the desired light effect. Particularly, the electrical circuit has no suspending node or open spot and interference due to antenna effect is avoided.
US10285270B2
A rigid flex circuit comprised of high thermal conductivity sections, said sections having components disposed so as to have their contacts substantially planar with the surface of the thermally conductive section and wherein the contacts are interconnected directly to the traces without the use of solder and further having the thermally conductive sections interconnected to one another by means of flexible circuit sections.
US10285262B2
Disclosed herein is a pattern safety device for preventing interference between patterns. In detail, a separately partitioned space is defined in an adhesion portion, which is formed on a plurality of patterns on the surface of a substrate so that a circuit element is placed on the adhesion portion, thus preventing interference between the patterns.
US10285254B2
Various embodiments relate to plasma actuators that generate fluidic flow. In one or more embodiments, a plasma actuator includes a first electrode and a second electrode. A dielectric film physically separates the first electrode and the second electrode of the plasma actuator. The dielectric film is configured to be attached to a surface to facilitate the plasma actuator providing fluidic flow for an environment. A method of using the dielectric film can include attaching the dielectric film to a surface of a machine, applying a voltage across electrodes of the dielectric film, and moving the machine based on an electrohydrodynamic (EHD) body force produced by the dielectric film.
US10285250B2
In various embodiments, lighting sources including at least one operating parameter, which is controllable in at least one lighting sequence as a function of a time code data set coupled with the sequence, are controlled by providing a repository of operating data files for the sources coupled with the lighting sources with each data file including at least one time code data set for at least one lighting sequence for a respective one of the lighting sources, by retrieving in the data repository at least one operating data file coupled with a selected one of the lighting sources, and by operating the selected lighting source by controlling the at least one operating parameter as a function of the operating data included in the operating data file retrieved.
US10285243B2
System, methods, and apparatus, including devices and software, for providing self-adjusting light sources. In one aspect, a lighting unit includes one or more LEDs and an ambient light sensor. The light sensor measures ambient light in synchronization with intermittent off periods of light generated by the LEDs. For example, the LEDs in the lighting unit can be driven by a pulse width modulated signal that turns on and off the LEDs in an alternating manner, and the ambient light can be measured when the LEDs are turned off. In some implementations, a compact lighting unit, such as a light bulb, is provided that can be easily attached to standard light fixtures and can efficiently control its own brightness based on ambient light conditions.
US10285240B2
An apparatus for driving a light emitting diode (LED) includes a current control circuit connected to an output terminal of a plurality of LEDs and configured to generate a first voltage based on a sensing voltage detected from the output terminal of the plurality of LEDs, the current control circuit including at least one comparator configured to control a current flowing in the plurality of LEDs based on a result of comparison between the first voltage and a reference voltage; and a protective circuit configured to block the current flowing in the plurality of LEDs by stopping an operation of the at least one comparator in response to an increase of the sensing voltage.
US10285236B2
An automotive headlight is disclosed including: an optical unit including a plurality of optical elements, each optical element having a different central direction; a segmented light-emitting diode (LED) chip including a plurality of LEDs that are separated by trenches formed on the segmented LED chip and arranged in a plurality of sections, each section being aligned with a different respective optical element, and each section including at least one first LED and at least one second LED; and a controller configured to: apply a forward bias to each of the first LEDs, apply a reverse bias to each of the second LEDs, and change a brightness of the first LEDs in any section based on a signal generated by the second LED in that section.
US10285235B2
A dimmable lighting system may replace a bi-level lighting system without having to modify or supplement the existing wiring between a bi-level control unit and one or more light fixtures. The dimmable lighting system may include a dimming controller that may be configured to replace a bi-level control unit in situ (i.e., e.g., in a wall-mounted dual-gang switch box). The dimmable lighting system may also include a dimming driver that may be coupled to the dimming controller via the existing wiring of the bi-level lighting system. The dimming controller may output to the dimming driver a 0-10 volt DC dimming signal referenced to an AC utility voltage. In response, a dimmable lighting device coupled to the dimming driver may output light over a wide range of dimming light levels. Methods of replacing a bi-level lighting system with a dimmable lighting system are also provided, as are other aspects.
US10285212B2
A master base station according to embodiment divides a bearer of a mobile station into two split bearers in a dual connectivity scheme. One split bearer is provided between the master base station and the mobile station without intervention of a secondary base station. Another split bearer is provided between the master base station and the mobile station with the intervention of a secondary base station. The master base station comprises a transmitter configured to transmit to the mobile station, information indicating whether the mobile station should transmit uplink data to the master station or to the secondary base station.
US10285206B2
In a wireless communication system, user equipment (UE) has autonomy provided by one or more set of rules to handle processing during a measurement gap. UE can ignore or use only a portion of the whole measurement gap if not needed. Thereby, an urgent need for remaining tuned to source carrier frequency can be supported, such as utilizing Random Access Channel (RACH) procedure. UE can also choose to tune to a target carrier frequency supporting timely handovers. Depending on the type of processing required (download shared channel (DL-SCH, UL-SCH, TTI bundling, RACH or SR), the UE may store requests and process the measurements during the gap or ignore the gap measurement as if there were no gaps.
US10285205B2
The invention relates to devices and methods for transmitting data on a radio channel comprising to jointly encode a preamble format with a first random access configuration, forming an extended random access configuration. The extended random access configuration is then transmitted on the radio channel.
US10285201B2
A transmitting wireless device and a method for performing a transmission to a receiving wireless device as well as a receiving wireless device and a method for receiving a transmission from the transmitting device are provided. Both wireless devices operate in a wireless network applying a contention-based medium access control protocol. The wireless network operates on a frequency resource. The method for performing a transmission to the receiving wireless comprises identifying a control channel of the frequency resource; and contending, at the control channel, for resources on a data channel of the frequency resource. When the contention for resources is successful, the method further comprises transmitting data to the receiving wireless device on the data channel of the frequency resource, wherein the control channel and data channel operate on separate frequencies of the frequency resource.
US10285173B2
A two-hop link transmission method and apparatus are provided. The method includes establishing a two-hop link and scheduling transmission on the two-hop link in a Device-To-Device (D2D) communication network. The two-hop link transmission method includes identifying neighbor terminals available for communication with the transmission terminal, selecting one of the neighboring terminals as a recipient terminal, determining a type of a link to be established with the selected neighboring terminal between a single-hop link and two-hop link types, selecting, when the two-hop link type is determined, a relay terminal among the neighboring terminals, establishing the two-hop link with the recipient terminal via the relay terminal, allocating a Multi-Hop Connection Identifier (MCID) for the two-hop link, and transmitting data to the recipient terminal through the two hop link.
US10285170B2
A method of a user equipment (UE) in a wireless communication system. The method comprises receiving, from a base station (BS), a dynamic downlink control signal including sounding reference signal (SRS) resource and configuration information based on user pool scheduling information, wherein the UE is included in a user pool group determined by the user pool scheduling information. The method further comprises determining the SRS resource and configuration information included in the user pool scheduling information received by the dynamic downlink control signal and transmitting, to the BS, SRS based on the SRS resource and configuration information included in the user pool scheduling information.
US10285166B2
A method by a terminal, method by a base station, a terminal, and a base station are provided. The method by the terminal includes transmitting two transport blocks; and if one of the two transport blocks is negatively acknowledged (NACKed) and a physical downlink control channel (PDCCH) including control information is not detected, adjusting retransmission for the NACKed transport block using a precoding index 0 and a number of layers corresponding to the NACKed transport block.
US10285163B2
A mechanism is described herein for enhancing the radio coverage for a wireless device based on an exchange of uplink and downlink radio condition information, referred to as uplink and downlink Radio Coverage Category (RCC) values, between the wireless device and a network (e.g., a Radio Access Network (RAN) node, Core Network (CN) node) for use in data transmission (e.g., control plane related signaling or user plane related payload transmission).
US10285161B2
Provided is a radio communication terminal which is capable of measuring quality in communication with a handover destination with high accuracy. The radio communication terminal is capable of communicating with a base station or a relay node, and includes: a receiver which receives control information including information relating to measurement of measuring quality of a neighbor cell; an extractor which extracts information on a subframe where the measurement should be performed, which is a subframe where only transmission of a signal from the relay node connected to the base station is performed, from the information relating to the measurement; a measurement section which performs the measurement, on a subframe basis, based on the extracted information on the subframe where the measurement should be performed; and a transmitter which transmits a result of the measurement to the base station or the relay node.
US10285158B2
A paging profiling method for determining a number of page repetition and a time interval between the page repetitions is disclosed. The method comprises triggering the paging profiling by causing a page relating to one or more wireless communication devices. In some embodiments the method may further comprise updating an entry of a paging pattern database based on the paging profiling, wherein the entry is associated with a geographical area in which the one or more wireless communication devices reside. The paging pattern database may, for example, be comprised in a server. In some embodiments, the method may also comprise detecting that the paging profiling is needed by detecting that the entry of the paging pattern database is not valid, and triggering the paging profiling may be enabled responsive to detecting that the paging profiling is needed. Corresponding paging profiling arrangement, computer program product, wireless communication device and server are also disclosed.
US10285156B2
A method for performing inter-frequency positioning measurements on positioning signals periodically transmitted by at least some of a plurality of cells in a wireless communication network is provided. The method includes receiving, at a mobile device, assistance data that identifies a first neighbor cell the plurality of cells, where the first neighbor cell transmits a first positioning signal. The method also includes obtaining a first cell property of the first neighbor cell. The mobile device then adjusts a duration of a first measurement gap in response to the first cell property. In one aspect, the first measurement gap corresponds to a time period during which the mobile device is to perform positioning measurements of the first positioning signal.
US10285137B2
A radio terminal is provided that can provide a flexible transmission power control for an SRS without restrictions due to the transmission power control of a PUSCH, for the purpose of enabling use of an SRS for various purposes in a HetNet CoMP environment. The radio terminal receives a control signal including a transmission power control command (TPC command) to be applied to an aperiodic sounding reference signal (A-SRS), through a physical downlink control channel (PDCCH), updates a transmission power value of the A-SRS using the TPC command, and transmits the A-SRS using the updated transmission power value in accordance with a transmission request included in a control signal indicating assignment of a physical downlink data channel (PDSCH) or assignment of a physical uplink data channel (PUSCH).
US10285132B2
Mobile station and method for saving energy in the mobile station. The method includes generating energy saving information associated with said mobile station, and which indicates an energy status of said mobile station. The method further includes transmitting the energy saving information to at least one first network node, and receiving, from said at least one first network node, an instruction for energy saving, based on the energy saving information.
US10285123B2
An assignment controller (160) identifies multiple instances of an IMS control function (210, 220) as being candidates for assigning to an IMS endpoint (110). The controller (160) also obtains a performance metric for each candidate instance that is a measure of the extent to which performance requirements for a signaling path of an anticipated or ongoing session of the endpoint (110) would be met if the instance were to be assigned to the endpoint (110). The controller (160) further obtains an emission metric for each candidate instance that is a measure of the extent to which the instance would produce greenhouse gas emissions if the instance were to be assigned to the endpoint (110), given the energy consumption and rate of emissions currently attributable to the instance (110). The controller (160) prioritizes the candidate instances based on these metrics, and controls assignment of one of the instances to the IMS endpoint (110) to be performed according to that prioritization.
US10285114B2
Neutral host networks may offer one or more different services via one or more different service providers, but user equipment (UE) may not necessarily know which services/service providers are offered by the neutral host networks. Accordingly, nodes of the neutral host networks (e.g., an access point, such as an evolved Node B (eNB)) may transmit service discovery information (SDI) to advertise the one or more services or service providers offered by the node and/or the neutral host network. Thus, a UE can receive the SDI via broadcast by the node, dedicated message from the node, etc., and can accordingly present at least a portion of the SDI or determine whether to connect to the node or another node of the neutral host network based at least in part on the SDI.
US10285113B2
Fixed devices may be distinguished from mobile devices in a broadband wireless network. Fixed devices may be given an identifier that identifies the device as a fixed device.
US10285104B2
Provided are a cross-Master eNB (MeNB) switching method and apparatus, and a base station. The method comprises: a target MeNB determines that a UE has already established a selected internet protocol traffic offload (SIPTO)/local internet protocol access (LIPA) service on a secondary eNB (SeNB) before the switching; and the target MeNB retains or releases the SIPTO/LIPA service, wherein the user equipment (UE) is accessed to a source MeNB and the SeNB through dual links before the switching, and the UE is accessed to the target MeNB and the SeNB through the dual links after the switching, and a combined local gateway (L-GW) supporting the SIPTO/LIPA service is configured on the SeNB. By means of the present invention, the problem in the related art of not considering the processing of the SIPTO/LIPA service in the cross MeNB switching process is solved, thereby providing an SIPTO/LIPA service processing method in the cross MeNB switching process.
US10285096B2
A process for determining neighbor tier relationships between cells in a wireless telecommunications network includes establishing a plurality of cell points, each cell point representing a cell of a plurality of cells in the wireless telecommunications network, forming a plurality of triangles, the vertices of each triangle of the plurality of triangles corresponding to respective cell points of the plurality of cell points, removing edges from a portion of the plurality of triangles, determining neighbor tier relationships between the plurality of cells using remaining triangle edges between the plurality of cell points, storing the neighbor tier relationships in a first memory, and using the neighbor tier relationships for handovers between the plurality of cells.
US10285095B2
When detecting occurrence of an event for transmitting a measurement report of a radio condition of a cell at a frequency set for a base station apparatus, to the base station apparatus (3) communicating with a terminal apparatus (2), the terminal apparatus (2) in a wireless communication system (1) creates a measurement report including information indicating radio conditions of cells at a frequency at which the event occurred and at another different frequency. The base station apparatus (3) controls whether or not to perform handover of the terminal apparatus (2) to another cell, on the basis of the measurement report transmitted from the terminal apparatus (2). Thereby, there is provided a wireless communication system in which a base station apparatus and the terminal apparatus are communicable with each other using multiple frequencies, the wireless communication system being capable of shortening time required for handover.
US10285083B2
A method and apparatus for transmitting an indication of cell coverage in a wireless communication system is provided. A first eNodeB (eNB) transmits an indication which indicates cell coverage of an active antenna system (AAS) to a second eNB. The indication may be one of a cell split/merge/remove indication.
US10285080B2
A method and associated systems for improving robustness of a cellular network. A topology of the cellular network is represented as an undirected graph that represents base stations as nodes and represents communication paths between base stations as edges. Each node is associated with a “synergistic” version of a Shapley value proportional to an amount of network disturbance that would occur if that value's corresponding base station should fail. The synergistic nature of the synergistic Shapley values allows them to account for scenarios in which multiple base stations fail at the same time. A synergistic Shapley value of a particular node is derived as a function of how many of the shortest paths between nodes of the graph lengthen when the node's corresponding base station fails. Base stations and nodes associated with higher synergistic Shapley values are deemed to be “censorious” and in need of reconfiguration.
US10285075B2
In an ad hoc wireless network, nodes determine contextual locations based at least in part on measured ranges to a plurality of fixed nodes having predetermined locations. When the contextual locations contains at least one error, the contextual locations are updated based at least in part on measured ranges between pairs of nodes in the ad hoc wireless network.
US10285071B2
A base station control method for a wireless communication system, a base station control apparatus, a wireless communication system and an electronic device. The wireless communication system includes a small cell. The base station control apparatus includes an upper limit determination unit and a frequency band control unit; wherein the upper limit determination unit is configured to determine the upper limit of the estimated number of small cells using unlicensed frequency bands in a target region according to available unlicensed frequency band resources and estimated service volume in the target region; and the frequency band control unit is configured to control one or more small cells to use or stop using the unlicensed frequency bands according to the upper limit of the estimated number, so that the number of small cells operating at the unlicensed frequency bands is not greater than the upper limit of the estimated number.
US10285064B2
Various embodiments of the present disclosure provide a method for coordinating resources between different operating networks. The method comprises determining whether coordination with a second operating network is triggered and transmitting a coordination request to the second operating network, in response to determining that the coordination is triggered. The method also comprises receiving a coordination response from the second operating network. The method further comprises determining blanking patterns by initiating a coordination procedure between the first and second operating networks to, in response to receiving an acknowledgement in the coordination response from the second operating network; and scheduling according to one of the determined blanking patterns in the first operating network.
US10285063B2
A service allocation determination device and service allocation determination method that can allocate a service to a slice without wasteful use of resources. In a BSS/OSS, a service request receiving unit receives service requirements and information indicating functions for implementing a service. An allocation determination unit, using the service requirements and slice information, determines whether to allocate the service to an existing slice or to a new slice. An allocation request unit makes a request to allocate the service to the slice determined by the allocation determination unit. In this case, because the BSS/OSS 10 determines whether to allocate the service to an existing slice or to a new slice based on the service requirements and the attribute of the existing slice, the service can be allocated to a slice without wasteful use of resources.
US10285050B2
A method for downloading a profile of an electronic apparatus is provided. The method includes receiving profile information from a profile information transfer server, transmitting a profile request to an identified profile providing server based on the profile information, and receiving a profile installable in a universal integrated circuit card (UICC) of the electronic apparatus from the profile providing server, and an electronic apparatus. Further, the present disclosure may provide a profile information providing server providing the profile information to the electronic apparatus and an operation thereof, and a profile providing server providing a profile to the electronic apparatus and an operation thereof. Further, the present disclosure may provide a method for swapping a profile between apparatuses, a method for acquiring profile information using code information, a method for modifying a profile providing server, and an apparatus performing the same.
US10285046B2
A terminal a wireless communication system is provided. The terminal includes a communication unit; and a controller configured to determine, by scanning a radio frequency (RF), at least one network to which the terminal is accessible; detect an input for selecting a network from among the determined at least one network; identify address information of a subscription server for a network provider corresponding to the selected network; and control the communication unit to transmit identification information associated with an embedded universal integrated circuit card (eUICC) of the terminal to the subscription server operated by the network provider, based on the address information; receive an acknowledgement message from the subscription server; transmit a message for requesting a profile associated with the network provider to a profile management server; and receive the requested profile from the profile management server.
US10285042B2
A system and method to assist in establishing a communication session to a mobile device having a registered IMS session in a visited network, or having both a registered IMS session and a circuit-switched session in a visited network. When a mobile device establishes an IMS session with an application service in a visited network, the address of the application service and the identity of the mobile device is transmitted to the Home Location Register (HLR) and/or Home Subscriber Server (HSS) associated with the mobile device. The HLR or HSS stores the address of the application service in conjunction with the identity of the mobile device. When requests to establish a communication session with the mobile device are made, the HLR or HSS provides the address of the application service that is associated with the mobile device in the visited network to allow a communication session to be established.
US10285041B2
A wireless communication apparatus includes a communication controller and an identification information setup portion. The communication controller establishes first communication, namely, communication with a first wireless communication apparatus having identification information already set and receives first information, namely, information to settle the identification information to be set, from the first wireless communication apparatus. The identification information setup portion sets the identification information for the wireless communication apparatus based on the first information. After setting the identification information, the communication controller establishes second communication, namely, communication with a second wireless communication apparatus having identification information not set yet, and transmits second information, namely, information to settle the identification information to be set for the second wireless communication apparatus, to the second wireless communication apparatus. The communication controller transmits the second information to one second wireless communication apparatus and subsequently does not transmit the second information.
US10285031B2
A method for controlling an information terminal according to one aspect of the present disclosure includes: when a user of the information terminal uses the electric mobile body, acquiring information indicative of a state of an electric storage device mounted in an electric mobile body from the electric storage device via a first communicator that is a communicator of the information terminal and that performs near field communication with the electric storage device; and transmitting the information indicative of the state of the electric storage device to a server device via a second communicator that is a communicator of the information terminal and that communicates with the server device.
US10285028B2
Aspects of the present disclosure provide adaptive radio link monitoring for machine type communication(s) (MTC), enhanced MTC (eMTC), and/or narrowband Internet-of-Things (NB-IoT). In one aspect, a method is provided which may be performed by a user equipment (UE). The method generally includes receiving a first configuration of parameters for receiving downlink control channel signaling, the first configuration of parameters associated with a first coverage level; measuring at least one parameter related to channel conditions; determining one or more dynamic radio link monitoring (RLM) threshold values for the at least one parameter based, at least in part, on the first configuration of parameters; and performing RLM functions based on the one or more dynamic RLM threshold values. The threshold may comprise early out thresholds that occur before out-of-sync (OOS) or in-sync thresholds. The thresholds may be determined using lookup tables.
US10285024B2
An apparatus for multi-terminal communication service includes a service determination unit configured to determine use or non-use of a mobile communication service by a main communication terminal or an auxiliary communication terminal corresponding to the main communication terminal, a terminal determination unit configured to determine a communication terminal among the main communication terminal and the auxiliary communication terminal, which does not use the mobile communication service, and a service changing unit configured to change a type of the mobile communication service to be provided to the determined communication terminal. The mobile communication service includes a data communication service and the use or non-use of the data communication service is determined based on information from a DPI (Deep Packet Inspection) or a charging device.
US10285011B2
An example system includes a location signature engine to determine a location signature based on a location of a user. The system also includes a signature comparison engine to determine whether the location signature matches a known signature. The system also includes a location determination engine to prompt the user for the location of the user based on the location signature not matching the known signature. The location determination engine also is to determine whether a user indication of the location is accurate.
US10285010B2
A range between a first wireless device and a second wireless device is estimated using a first mechanism based on messages transmitted over a first communication channel. The first communication channel is associated with a first radio access technology capability of the wireless devices. One or more metrics indicative of an accuracy of the range estimates provided by the first mechanism are obtained. A second mechanism to estimate a range between the first wireless device and the second wireless device may be implemented in favor of the first mechanism when the metric fails to satisfy a criterion. The second mechanism is based on unicast messages transmitted over a second communication channel. The second communication channel is associated with a second radio access technology capability of the wireless devices and may be the same as, or different from, the first communication channel.
US10285003B2
A power distribution box and method of communicating via the power distribution box are provided. A power input in the power distribution box is coupled to a power output to provide power to external devices. A gateway device supported by the housing of the power distribution box includes a wireless network module for communicating with power tools and a cellular module for communicating via a cellular network with a power tool monitoring system. The gateway may be removable from the power distribution box. A translation controller in the gateway enables communication between the wireless network module and the external network using the cellular module. The translation controller translates messages between the power tools and external network. The messages may include location data or operational data associated with the power tool.
US10284994B2
A directional loudspeaker system has a loudspeaker arrangement configured to generate N audio signals. A time-of-flight sensor arrangement is configured to detect a location of a user. A controller is configured to use information from the time-of-flight sensor arrangement about the location of the user to control the delay such that the N audio signals constructively interfere at the location of the user.
US10284991B2
Methods, systems, and apparatuses are described for determining relative locations of wireless loudspeakers and performing channel mapping thereof. An audio processing component utilizes sounds produced by wireless loudspeakers during setup/installation procedures, which are received by a microphone at locations in an acoustic space, to determine an amount of time between when the audio signal is initially transmitted and when the microphone signal is received. The audio processing component also utilizes wireless timing signals provided by a wireless transceiver, at locations in the acoustic space, to wireless loudspeakers and then back to the wireless transceiver to determine an amount of time between transmission and reception by the wireless transceiver. The timing delays are used to determine the locations of the wireless loudspeakers in the acoustic space. Based on the determined locations, the audio processing component generates indications of correct or incorrect wireless loudspeaker placements, and performs audio channel mapping.
US10284984B2
Example techniques involve a calibration state variable. An example implementation receives, via a network interface, an indication that the first playback device is calibrated. Based on receiving the indication that the first playback device is calibrated, the example implementation updates a calibration state variable to indicate that the first playback device is calibrated, wherein the calibration state variable is stored in the data storage. The example implementation sends, via the network interface, an indication of the updated calibration state variable to a second device.
US10284983B2
Examples described herein involve providing playback device calibration user interfaces to guide a calibration process for one or more playback devices in a playback environment. In one example, a network device receives audio samples continuously from a microphone of the network device for a predetermined duration of time, wherein the predetermined duration of time comprises a plurality of periodic time increments. At each time increment within the predetermined duration of time, the network device dynamically updating on a graphical display of the network device, (i) a representation of a frequency response based on audio samples that have been received between a beginning of the predetermined duration of time and the respective time increment, and (ii) a representation of the respective time increment relative to the predetermined duration of time.
US10284982B1
A method includes: receiving, at a processor that is remote from a bone conduction device adhered to a user's skin, a first output signal from the bone conduction device, the first output signal having been generated by a first sensor in the bone conduction device, the first sensor being configured to detect non-audible inputs; identifying, at the processor, a first measurement signal characteristic based on the first output signal; determining, at the processor, that the first measurement signal characteristic is indicative of a state of the user; selecting a control signal configured to cause a transducer in the bone conduction device to generate an output to alter the state of the user or the user's perception of the state; and transmitting the control signal from the processor to the bone conduction device.
US10284981B2
Examples are provided for establishing a bonded zone comprising a first playback device comprising a respective first wireless radio and a second playback device comprising a second respective wireless radio. The first and second playback devices may establish a bonded zone comprising at least the first and second playback device. While in the established bonded zone, the first playback device may determine that the first playback device is in the established bonded zone and that the first playback device is not currently playing audio in synchrony with the second playback device. Responsive to determining that the first playback device is not playing audio in synchrony, the first playback device may disable communicating via the first wireless radio of the first playback device and send a message to the second playback device to disable communicating via the first wireless radio of the second playback device.
US10284975B2
The present disclosure relates to methods and apparatus for constructing and fitting a component that is designed to be worn at least partially within an ear canal. The methods and apparatus may be used in hearing aids such as receiver-in-canal hearing aids and completely-in-canal hearing aids. The techniques may also be use in constructing and fitting other devices including audio earbuds and ear plugs.
US10284974B2
Disclosed herein, among other things, are methods and apparatus for mitigating foreign material buildup for hearing assistance device components. The present subject matter includes a hearing assistance device transducer barrier layer configured to resist accumulation and passage of foreign materials. In various embodiments, the barrier layer includes a membrane that is coated with oleophobic and hydrophobic materials, wherein the barrier is acoustically transparent but prevents the accumulation and passage of unwanted materials.
US10284968B2
A hearing prosthesis, including an implantable microphone, and a sound management system, wherein the hearing prosthesis is configured to set an operational parameter of the sound management system based on input from a microphone external to the recipient of the implantable microphone.
US10284966B2
Techniques used to selectively amplify audio signals are described herein in connection with audio amplification electronic devices, such as hearing aids, including over-the-ear hearing aids. A device and its operation are described to facilitate setting low and high tone/volume controls separately, using at least two selection mechanisms. In one aspect, a first selection mechanism includes a pitch frequency control rocker switch and the second selection mechanism includes a bass frequency control rocker switch disposed separately. In one aspect, the bass frequency control rocker switch causes a processor to bias the frequency response of the sound amplifier for frequencies below 1 kHz. In another aspect, the pitch frequency control rocker switch causes a processor to bias the frequency response of the hearing for frequencies above 1 kHz. In another aspect, the selection mechanism involves the separate attenuation of treble and bass adjustments in response to a user selection of a rocker switch setting for each adjustment.
US10284964B2
Embodiments of the present invention provide improved methods and apparatus suitable for use with hearing devices. A vapor deposition process can be used to make a retention structure having a shape profile corresponding to a tissue surface, such as a retention structure having a shape profile corresponding to one or more of an eardrum, the eardrum annulus, or a skin of the ear canal. The retention structure can be resilient and may comprise an anatomically accurate shape profile corresponding to a portion of the ear, such that the resilient retention structure provides mechanical stability for an output transducer assembly placed in the ear for an extended time. The output transducer may couple to the eardrum with direct mechanical coupling or acoustic coupling when retained in the ear canal with the retention structure.
US10284955B2
An audio enhancement system can provide spatial enhancement, low frequency enhancement, and/or high frequency enhancement for headphone audio. The spatial enhancement can increase the sense of spaciousness or stereo separation between left and right headphone channels. The low frequency enhancement can enhance bass frequencies that are unreproducible or attenuated in headphone speakers by emphasizing harmonics of the low bass frequencies. The high frequency enhancement can emphasize higher frequencies that may be less reproducible or poorly tuned for headphone speakers. In some implementations, the audio enhancement system provides a user interface that enables a user to control the amount (e.g., gains) of each enhancement applied to headphone input signals. The audio enhancement system may also be designed to provide one or more of these enhancements more effectively when headphones with good coupling to the ear are used.
US10284947B2
An apparatus for microphone positioning includes a spatial power distribution determiner and a spatial information estimator. The spatial power distribution determiner is adapted to determine a spatial power density indicating power values for a plurality of locations of an environment based on sound source information indicating one or more power values and one or more position values of one or more sound sources located in the environment. The spatial information estimator is adapted to estimate acoustic spatial information based on the spatial power density.
US10284946B2
A speaker frame, including: a vibration support portion supporting a vibrating body of a speaker; a magnet support portion arranged inside of said vibration support portion and supporting magnetic circuit portion of said speaker; and a plurality of connection beams connecting said vibration support portion and said magnet support portion, wherein the vibration support portion and the magnet support portion have a circular ring shape having the same major axis length and minor axis length, said plurality of connection beams are arranged radially centering on a central axis from said magnet support portion to said vibration support portion, the central axis being parallel to a direction of an acoustic radiation, and a length of one of said connection beams and a length of another connection beams are different from each other.
US10284942B2
An accessory such as a wireless earbud may have an antenna for transmitting and receiving wireless signals. A housing for the earbud may have a main body portion and an extended portion that forms a stalk protruding from the main body portion. The earbud may have a speaker aligned with a speaker port in the main body portion. The antenna may have an elongated shape and may extend along the stalk. The stalk may have a plastic housing wall portion. The antenna may be formed from first and second metal traces on opposing sides of a printed circuit substrate. The first metal trace may form an antenna resonating element arm and may lie between the substrate and the plastic housing wall portion. The second metal trace may be a ground trace. A feed for the antenna may be located at a juncture between the main body portion and the stalk.
US10284929B2
A computed tomography (CT) apparatus wireless controller has a CT main control circuit and a wireless main control circuit. The wireless main control circuit receives a control signal from a wireless secondary controller, and subjects the control signal to a validity check according to an identifier of the wireless secondary controller carried in the control signal when the control signal passes the check, it is supplied to the CT main control circuit from the wireless main control circuit. The CT main control circuit performs corresponding operation control according to the control signal.
US10284928B2
Systems, methods, architectures, mechanisms or apparatus for analyzing cable modem termination system (CMTS) streams by correlating anomalies found in full spectrum CMTS upstream data to changes in cable modem operational settings to identify and correct network fault conditions, model CMTS behavior, improve network performance and the like.
US10284927B2
Commission devices (1) comprise first transmitters (11) for transmitting activation signals to load devices (2-6), and second transmitters (12) for transmitting numbers of challenge signals to activated load devices (2) that respond by sending back a response signal per challenge signal to the commission devices (1). The commission devices (1) further comprise first receivers (13) for receiving the response signals and controllers (14) for determining time-intervals present between transmissions of the challenge signals and receptions of the response signals. The controllers (14) derive absolute or relative positions of the load devices (2-6) from analyzes such as statistical analyzes of the time-intervals. Load devices (2-6) comprise second receivers (21) for receiving the activation signals and third receivers (22) for receiving the number of challenge signals and third transmitters (23) for sending back the response signals to the commission devices (1). The load devices (2-6) may further comprise loads (26).
US10284924B2
A system and method for communicating biofeedback to a user through a wearable device that includes collecting physiological data of at least one physiological property of a user; processing the physiological data into at least one biosignal; monitoring the at least one biosignal for a feedback activation condition; and upon satisfying a feedback activation condition, delivering haptic feedback.
US10284922B2
The present invention relates to an advertisement detection system based on fingerprints, and provides an advertisement detection systems based on fingerprints, including a content stream storage unit for storing broadcast content in real time, a section selection unit for selecting a reference section and a test section from broadcast content stored by the content stream storage unit, a fingerprint extraction unit for extracting fingerprints from the reference section and the test section selected by the section selection unit using one or more methods, a fingerprint matching unit for comparing the fingerprints from the test section and the reference section, extracted by the fingerprint extraction unit, with each other and then performing matching between the fingerprints, an advertisement section determination unit for determining advertisement segments from the test section based on results of the matching performed by the fingerprint matching.
US10284920B2
There are described methods and systems for distributing content in a network, in particular a multicast network. One method includes delivering content from a source to a destination in a content delivery network. A request for an item of content is received and a first multicast stream is identified or established, the first multicast stream comprising a first copy of the content. At least one second multicast stream is also identified or established, the second stream comprising a second copy of the content. The second copy of the content is time-shifted by a time, M, from corresponding portions of the first copy of the content. The content is then delivered to the destination using both the first and the second multicast streams.
US10284919B2
In accordance with some implementations of the disclosed subject matter, mechanisms for determining channel information are provided. In some implementations, a method for providing media guidance is provided, the method comprising: associating with a local area network; detecting at least one media device on the local area network; determining device information associated with the at least one media device on the local area network; determining, without user intervention, television provider information based on the device information; determining location information of the at least one media device; determining channel information based on the determined television provider information and the determined location information; and causing media guidance information to be presented that includes at least a portion of the determined channel information.
US10284917B2
A particular method includes extracting, at a computing device, uniform resource locator data from closed-captioning content. The method further includes receiving, at the computing device, user settings via a network interface. The user settings include an organizational preference corresponding to the uniform resource locator data. The method also includes generating, at the computing device, a web page that includes a portion of the uniform resource locator data as selectable links. The selectable links are organized according to the organizational preference.
US10284912B2
Systems and methods for real-time transmission of data streams are disclosed. A controller receives data representing selected stream parameters from a browser residing on a computing device. The controller transmits the received data to a video transmitting device. A transcoder receives a first data stream generated according to the selected stream parameters from the video transmitting device. The transcoder generates a second data stream from the first data stream, the second data stream formatted for browser display; and then transmits the second data stream to the browser. A user may remotely control the video transmitting device using the browser. A user may view data streams from multiple video transmitting devices using the browser.
US10284904B2
An entry adapter allows downstream and upstream external signals to be conducted to a server interface of an internal client-server network and allows downstream and upstream external signals to be conducted to a client interface of the internal client-server network. The adapter also includes frequency band separation and blocking means for separating the client signals from the external signals based on the client signals having a higher frequency than the external signals, allowing the external signals to be conducted to only the server interface, allowing the client signals to be conducted through the second port means and the third port means, blocking the client signals from being conducted to the external network, and allowing the client signals to be conducted between the server interface and the client interface.
US10284899B2
A terrestrial receiver at a premises includes a plurality of antennas and a corresponding plurality of tuners. The terrestrial receiver receives terrestrial television signals via the plurality of antennas and the plurality of tuners and diversity combines a corresponding plurality of terrestrial television channels within the received terrestrial television signals, for example, based on control signals received from one or more customer premises equipment (CPE). The terrestrial receiver processes the diversity combined corresponding plurality of terrestrial television channels and communicates the processed and diversity combined corresponding plurality of terrestrial television channels to the one or more CPE. The diversity combined corresponding plurality of terrestrial television channels may be remodulated, and converted to corresponding analog signals prior to being communicated to the one or more CPE. The diversity combined corresponding plurality of terrestrial television channels may be demodulated and converted to intermediate frequency signals prior to being communicated to the one or more CPE.
US10284898B2
A data distribution device for stably distributing specific data such as video data is provided. Video distribution device as a data distribution device includes video distribution unit as a specific data distribution unit, video distribution determining unit as a specific data distribution determining unit, and routing setting unit. When video distribution determining unit determines that video distribution unit is distributing video data as the specific data, and when the default route information has been acquired from a second communication device connected to a second network, routing setting unit holds the default route information without changing the default route.
US10284894B2
A method for generating a filename for a chunk of streamed video content is disclosed. The method comprises performing a cryptographic hash function on data associated with the chunk of video content (100A) and setting the output hash value of the cryptographic hash function as the chunk filename (100B). A method for recording broadcast video content by a user device is also disclosed. The method comprises receiving a chunk of broadcast video content (310), generating a filename for the received chunk of video content (320) and storing the generated filename in a user specific storage (330). A method for broadcasting a chunk of video content is also disclosed. The method comprises generating metadata corresponding to the chunk of video content (550), the metadata comprising at least one parameter for generating a file name for the chunk of video content, and broadcasting the generated metadata with the chunk of video content (560). Also disclosed are network elements (200, 400, 600, 700) and a computer program product.
US10284893B2
A system that incorporates teachings of the subject disclosure may include, for example, determining identified impressions that are detected from consumption data collected from a group of media processors where the identified impressions represent viewing of selected content and where the consumption data indicates channel tuning events at the group of media processors including changing of channels, applying a ridge regression analysis to the identified impressions to determine a predicted number of target impressions per advertisement slot, and generating a media plan based on a ratio of an advertisement slot cost to the predicted number of target impressions per advertisement slot. Other embodiments are disclosed.
US10284879B2
The present technology relates to an image processing apparatus and method that enable suppression of increase in the load of encoding and decoding floating point-precision image data. The image processing apparatus of the present technology transforms floating point-precision image data composed of a sign, an exponent, and a mantissa into integer-precision image data, and encodes the integer-precision image data obtained by transformation. The present technology can be applied to image processing apparatuses such as encoding apparatuses that encode image data and decoding apparatuses that decode encoded data obtained by encoding image data, for example.
US10284877B2
A video encoder may compare frames to generate a difference frames. The difference frame may be apportioned to generate a plurality of portions. Portions meeting a threshold pixel number condition are selected for compression. The threshold pixel number condition may measure the number of pixels which exceed an intensity threshold.
US10284874B2
Systems and methods are described for encoding and decoding video using derived block vectors as predictors in intra block copy mode. In an exemplary encoding method, an encoder identifies at least a first candidate block vector for the prediction of an input video block, where the first candidate block vector points to a first candidate block. The encoder then identifies a first predictive vector (e.g. a block vector or a motion vector) that was used to encode the first candidate block. From the first candidate block vector and the first predictive vector, the encoder generates a derived predictive vector from the first candidate block vector and the first predictive vector. The encoder then encodes the video block in the bit stream using the derived predictive vector for the prediction of the input video block.
US10284861B2
A first memory stores values of blocks of pixels representative of a digital image, a second memory stores partial values of destination pixels in a thumbnail image, and a third memory stores compressed images and thumbnail images. A processor retrieves values of a block of pixels from the first memory. The processor also concurrently compresses the values to generate a compressed image and modify a partial value of a destination pixel based on values of pixels in portions of the block that overlap a scaling window for the destination pixel. The processor stores the modified partial value in the second memory and stores the compressed image and the thumbnail image in the third memory.
US10284841B2
The method for decoding an intra-picture prediction mode includes the steps of: determining whether the intra-picture prediction mode of a current prediction unit is identical to a first intra-picture prediction mode candidate or a second intra-picture prediction mode candidate based on bit information; and when the intra-picture prediction mode of the current prediction unit is identical to the first intra-picture prediction mode candidate and/or to the second intra-picture prediction mode candidate, determining whether the first intra-picture prediction mode candidate or the second intra-picture prediction mode candidate is identical to the intra-picture prediction mode of the current prediction unit on the basis of additional bit information, and decoding the intra-picture prediction mode of the current prediction unit.
US10284836B2
Disclosed are a device and a method of depth sensing that handle light leakage issues. In some embodiments, the depth sensing device includes a light emitter that illuminates an environment of the depth sensing device. The device identifies a first portion of the emitted light that is prevented from reaching the environment of the device due to being redirected by an optical component located in proximity to the light emitter. An imaging sensor of the device detects a second portion of the emitted light that reaches and is reflected by a surface in the environment of the device other than a surface of the optical component. The device generates, based on the second portion of the emitted light, a depth map that includes a plurality of values corresponding to distances relative to the device, wherein said generating excludes from consideration the identified first portion of the emitted light.
US10284834B2
A system, method, and computer program product are provided for displaying a combined image based on a cost function. In use, two or more source images are loaded and a first blend weight is initiated associated with the two or more source images. Next, a first combined image from the two or more source images and a cost function for the first combined image is computed. It is determined whether the cost function is substantially minimized, wherein if the cost function is not substantially minimized, the first blend weight is updated to substantially minimize the cost function, the first combined image is updated based on the updated first blend weight, and the user interface element associated with the updated first combined image is updated. A display then displays the first combined image based on the first blend weight and a user interface element associated with the first combined image. Additional systems, methods, and computer program products are also presented.
US10284830B2
Techniques that can overcome challenges for providing a virtual template for placing a part onto a utility or communication pole that includes twists that extend along at least a portion of a length of the pole. A user to use a laser pointer to trace along a corner between faces of a non-cylindrical pole, and feed that location registration information to the laser projection system to use in determining the location at which to place the virtual template on the utility or communication pole.
US10284829B2
A wheel assembly includes a housing, a wheel, and a thermal conductive assembly. The wheel is disposed inside of an enclosure of the housing, and includes a first surface, a second surface, and a wavelength conversion layer formed on a coating area of the first surface and configured to convert wavelength of a light beam. The thermal conductive assembly includes a thermal conductive structure and a thermal conductive tube. The thermal conductive structure corresponds to an edge contour of the wheel and is disposed adjacent to an outer edge of the wheel. The thermal conductive tube is coupled to the thermal conductive structure and partially protrudes to an exterior of the housing for conducting heat generated by the wheel from the thermal conductive structure to the exterior of the housing. The distance between the thermal conductive structure and the outer edge of the wheel falls within 1-50 mm.
US10284826B2
An image sensor, and an apparatus and method of acquiring an image by using the image sensor are provided. The image sensor includes a color filter having an array of a plurality of types of color filter elements, where each of the color filter elements transmits visible light in a certain wavelength band and blocks visible light outside the certain wavelength band; a photoelectric conversion cell array that detects light that has been transmitted through the color filter; and a modulator, disposed on the photoelectric conversion cell array, which changes a rate of light transmitted to the photoelectric conversion cell array based on an applied voltage.
US10284824B2
A stacked image sensor comprises an array of tiles, each comprising a sensor array layer tile comprising a plurality of sensing elements for receiving radiation, one or more electronics layer tiles comprising at least one read-out circuit, connected to at least one subgroup of sensing elements of the sensor array layer tile, a photonics layer tile comprising at least one waveguide and one or more modulators, each connected to the one or more electronics layer tiles. The modulators are adapted for modulating an optical signal travelling within the at least one waveguide. The electronics layer tile comprises at least one driver for driving an optical modulator in the photonics layer tile in accordance with the signals received in each sensing element of the sensor array layer tile. At least one of the layer tiles (sensor array layer, electronics layer and/or photonics layer tiles) is implemented in a single integrated circuit.
US10284816B2
A mechanism is described for facilitating true three-dimensional (3D) virtual imaging on computing devices. A method of embodiments, as described herein, includes computing a virtual 3D model corresponding to an object. The method may further include computing and projecting, based the virtual 3D model, a unified surface image of the object via a dynamic 3D shape component, and generating and rendering a virtual image of the object based on the unified surface image such that the virtual image is capable of floating in air.
US10284811B1
A resistance-type splitting apparatus includes a transformer and a resistor distribution circuit. The resistor distribution circuit is electrically connected to the transformer. The resistor distribution circuit includes a plurality of distribution resistors. The distribution resistors are electrically connected to the transformer. The distribution resistors of the resistor distribution circuit are arranged as a radial pattern. The transformer receives a cable television signal. After the transformer receives the cable television signal, the transformer distributes the cable television signal through the distribution resistors. A transformer turns ratio of the transformer is adjusted to perform an impedance matching with the distribution resistors of the resistor distribution circuit.
US10284809B1
Systems for synchronizing events or transitions in visual content with musical features in audio content are configured to obtain audio and visual content; determine a minimum, maximum, and/or a target display duration for items of visual content; determine a first playback-time in the first audio content to associate with a start-of-display time for the first visual content; identify a first timeframe in the first audio content corresponding to a range of acceptable end-of-display times for the first visual content; identify musical features within the first timeframe; identify a candidate musical feature among the identified musical features in accordance with a hierarchy; and/or define a first candidate end-of-display time that aligns with the playback time of the candidate musical feature. A set of candidate end-of-display times are defined for multiple visual content items in a single multimedia project, the set identified by seeking a solution that increases rank among the hierarchy.
US10284806B2
Approaches presented herein enable displaying a barrage message. Specifically, one or more objects and location information for each object in a frame of a video are identified. A barrage message to be displayed in the frame of the video is obtained. The barrage message is displayed without covering any object in the frame.
US10284800B2
A solid-state image pickup element, including: a pixel array including a plurality of pixels; a first calculator that calculates a phase difference evaluation value for focus detection by a phase difference detection method based on signal from the pixel; and a second calculator that calculates a contrast evaluation value for focus detection by a contrast detection method based on signal from the pixel, wherein, when the first calculator completes calculation of the phase difference evaluation value, the phase difference evaluation value is output regardless of whether or not output of an image signal acquired by the pixel array is completed, and wherein, when the second calculator completes calculation of the contrast evaluation value, the contrast evaluation value is output regardless of whether or not output of the image signal acquired by the pixel array is completed.
US10284793B2
Methods, performed by a machine vision system, for forming a one dimensional digital representation of a low information content scene, e.g., a scene that is sparsely illuminated by an illumination plane, and the one dimensional digital representation is a projection formed with respect to columns of a rectangular pixel array of the machine vision system.
US10284788B2
A method for displaying images is provided, including displaying, by an electronic device, a first image obtained from an image sensor; displaying, by the electronic device, a plurality of second images together with the first image, wherein each second image is generated based on the first image and a respective image filter; and responsive to a selection of at least one second image, generating a third image based on the first image and the selected second image's respective image filter and displaying the third image in place of the first image.
US10284784B2
A shutter apparatus of an electronic front curtain system includes a motor configured to rotate in a first rotating direction and a second rotating direction opposite to the first rotating direction, a first light shield movable between a close state for closing an aperture and an open state for opening the aperture, a second light shield movable between the close state for closing the aperture and the open state for opening the aperture, and a first cam member configured to interlock and move the first light shield and the second light shield in accordance with a rotation in each of the first rotating direction and the second rotating direction of the motor.
US10284781B2
An imaging apparatus includes an image sensor configured to perform photoelectric conversion on a subject image formed by an optical system, a first driving actuator configured to cause translation and a rotational movement of the image sensor, a first angular velocity detector configured to detect a first rotation angular velocity, a second angular velocity detector configured to detect a second rotation angular velocity, a third angular velocity detector configured to detect a third rotation angular velocity, and an image blur correction control unit configured to control the first driving actuator so that the first driving actuator causes both the translation and the rotational movement, on the basis of a first rotation angular velocity, a second rotation angular velocity, a third rotation angular velocity, an optical center position of the optical system and a rotation center position of the image sensor.
US10284777B2
Embodiments include a method for autonomous camera pod tracking of a vehicle during vehicle alignment. The method can include receiving, at a processor of an autonomous camera pod, at least one of vehicle target image data from a vehicle target camera or calibration target image data from a calibration camera, the vehicle target camera being adapted to acquire images of a target mounted to the vehicle, and the calibration camera being adapted to acquire images of a calibration target mounted to a sister autonomous camera pod. An optimal location of the autonomous camera pod can be calculated based on the received vehicle target image data or calibration target image data. The method can include transmitting, when it is determined to move the autonomous camera pod, a motor command to a motor drive of the autonomous camera pod, thereby causing the autonomous camera pod to move to the optimal location.
US10284776B2
A region-of-interest setting portion sets, during image pickup, a region of interest in an image picked up using a camera built in portable equipment. A component image generation unit generates a component image in which, with the image picked up using the camera built in the portable equipment, posture information of the portable equipment and the region-of-interest information set by the region-of-interest setting portion are associated. A panoramic image generation unit combines a plurality of component images between which the posture of the portable equipment is different to generate a synthesis image.
US10284773B2
The present disclosure provides a method and an apparatus for preventing a field of view of an image capturing device from being shielded when capturing an image. Accordingly, an image capturing device may capture an unobstructed image that is free from any object obstructing the field of view of the image capturing device.
US10284772B2
Disclosed herein is an image monitoring system including: a camera connected to a network; display means for displaying an image captured by the camera; and display control means for controlling display such that, in displaying images by the display means, an image is displayed in a window having a predetermined layout; wherein the display control means presets an allocation database containing a correlation between the window having a predetermined layout and a camera identification code and, when the camera is connected to the network, automatically sets a correlation between the camera identification code in the allocation database and the camera, thereby controlling image display into the window on the basis of the allocation database.
US10284769B2
An imaging area in an image sensor includes a plurality of photo detectors. A light shield is disposed over a portion of two photo detectors to partially block light incident on the two photo detectors. The two photo detectors and the light shield combine to form an asymmetrical pixel pair. The two photo detectors in the asymmetrical pixel pair can be two adjacent photo detectors. The light shield can be disposed over contiguous portions of the two adjacent photo detectors. A color filter array can be disposed over the plurality of photo detectors. The filter elements disposed over the two photo detectors can filter light representing the same color or different colors.
US10284766B2
A mobile terminal and controlling method thereof are disclosed, by which a flying object equipped with a camera can be remotely controlled. The present disclosure includes a wireless communication unit configured to perform a communication with a flying object, a touchscreen configured to output a preview image received from the flying object, and a controller outputting a shot mode list on the preview image, the controller, if at least one shot mode is selected from the shot mode list, remotely controlling a flight location of the flying object in accordance with the selected at least one shot mode.
US10284758B2
There is provided a light receiving and emitting device including: a light receiving and emitting unit configured to have a plurality of pixels that receive light and perform photoelectric conversion through which an electric signal corresponding to an amount of the light is output and a plurality of light emitting units that emit light, the two or more light emitting units being disposed for every two or more pixels; an imaging optical system configured to form an image on the pixels of the light receiving and emitting unit; and a control unit configured to independently control light emission of the plurality of respective light emitting units.
US10284752B1
A method is provided for determining a start offset between a video recording device and an inertial measurement unit (IMU) for use in synchronizing motion data of an object collected by the IMU attached to the object with video frames captured by an image sensor of the video recording device of the object in motion. The start offset is then used to synchronize subsequently captured video frames to subsequently collected IMU motion data.
US10284743B2
An image processing apparatus that performs filtering by reading out an image from an external storage unit, the image being divided into a plurality of banks by a first interleave method according to a transfer length when the image is read out from the external storage unit is provided. The apparatus including: a plurality of local memories; and a control unit configured to divide, into a plurality of pixel fragments, a pixel of a bank which includes at least one of a plurality of pixels needed for the filtering by a second interleave method according to the transfer length and store each of the pixel fragments obtained as a result of division in one of the plurality of local memories in accordance with the transfer length.
US10284742B2
An exposure apparatus according to an embodiment includes: a board that includes a first surface on which a light emitting element is arranged and a second surface opposite to the first surface; a lens member on which light from the light emitting element is incident; a holder that holds the lens member; and an insulation sheet formed of an insulation material. The board includes an abutment part provided on a second surface of the board. The insulation sheet is fixed to the holder while being in contact with the abutment part.
US10284738B2
An image processing apparatus includes: a conveyance unit configured to convey a medium; a sensor configured to sense a medium being conveyed; and a controller configured to control the conveyance unit and acquire a result of the sensing performed by the sensor. The sensor includes a light emitter, a light receiver configured to perform output in accordance with the amount of the received light, and a shielding unit including a transmissive part through which the sensing light transmits. The transmissive part has a shape in which an opening width in a direction orthogonal to a conveyance direction of the medium changes in the conveyance direction. The controller determines skewing of the medium being conveyed based on change in the amount of light received by the light receiver as the medium passes along the transmissive part and temporal change in accordance with the conveyance of the medium.
US10284735B2
An operation console used in relation to an apparatus as an object of control operated by a user operation includes: a display device having a display area for displaying information to the user; an input device for the user to input a request; and a display control device displaying, if a request for displaying specific information on said display device is input through the input device, the specific information on the display device. The input device includes a plurality of operation buttons for inputting a plurality of requests, corresponding to respective requests, arranged in the vicinity of the display area. Among the plurality of operation buttons, an operation button corresponding to the request for displaying the specific information is provided closest to the display device.
US10284733B2
A scan task system includes a plurality of imaging devices, including MFDs, dedicated scanners, or mobile phones with scanning or camera functions. The system notifies a user or a number of users when a particular document needs to be scanned and transmitted to a specific destination. A scan task is sent to available imaging devices, and will appear when the user logs in at any imaging device on the network. When a user executes the scan task at any one of the imaging devices, the scan task is removed from all devices. The scan task can be pre-programmed to appropriately file or send a scanned document when the scan is executed.
US10284728B1
Devices and methods for howling suppression. One method includes receiving, via a microphone, an acoustic signal from a communication device operating in an acoustic field with the microphone. The method includes determining a reflection pattern for the acoustic field based on the acoustic signal, and determining an acoustic characteristic for the acoustic field based on the reflection pattern. The method includes determining, based on the acoustic characteristic, a plurality of howling zones for the acoustic field, each zone defined by first and second proximity thresholds. The method includes, for each of the howling zones, determining an attenuation level for the zone based on the proximity thresholds and the acoustic characteristic. The method includes determining a distance between the microphone and the communication device, selecting one of the howling zones based on the distance, and adjusting a volume of a loudspeaker based on the attenuation level for the selected howling zone.
US10284720B2
Systems and methods for using machine-learning techniques for labeling incoming calls with categories relating to a risk level. A model is generated using call log data. The call log data is augmented using information from additional data sources to generate features for the model. The model may then be used to categorize additional incoming calls. The model may be used in real-time to categorize incoming calls, or categorization results may be stored for a plurality of calling numbers. Various embodiments provide various technical advantages by virtue of how the components of the system are deployed between an endpoint communication device, a telephony provider system, and possibly other systems.
US10284719B2
Techniques, systems, apparatuses and methods to better interdict or screen calls without disturbing the callee. The phone user can implement a warning for unwanted human, i.e., live person callers, and a challenge or barrier for unwanted automated or robocalling, particularly the usage of a required response to a question. The warning and particularly the challenge would weed out undesired solicitations. The present invention also makes allowance for desired human, robotic or automated calling in addition to the proscripted calls.
US10284717B2
A method to transcribe communications is provided. The method may include obtaining first communication data during a communication session between a first communication device and a second communication device and transmitting the first communication data to the second communication device by way of a mobile device that is locally coupled with the first communication device. The method may also include receiving, at the first communication device, second communication data from the second communication device through the mobile device and transmitting the second communication data to a remote transcription system. The method may further include receiving, at the first communication device, transcription data from the remote transcription system, the transcription data corresponding to a transcription of the second communication data, the transcription generated by the remote transcription system and presenting, by the first communication device, the transcription of the second communication data.
US10284710B2
The present application discloses a mobile terminal control method, including: receiving a communication request sent by a communication request initiating party, and calculating a time interval between a time when the communication request is received and a time when a previous communication request from the communication request initiating party is received; and if the time interval is greater than a preset threshold, skipping generating a vibrating and/or ringtone alert for the communication request, and detecting an online status of a communications software account associated with the communication request initiating party and sending prompt information to an online communications software account, where the prompt information is used to indicate that a mobile terminal is in a Do Not Disturb mode.
US10284703B1
A portable full duplex intercom system using Bluetooth and method of use are provided in which the intercom system has a built in microphone and speaker in a device. In one embodiment, the portable full duplex intercom system using Bluetooth may be used in a vehicle to allow the people in the vehicle to communicate with each other.
US10284701B1
One exemplary embodiment provides a device comprising: a connection panel configured to accept a removable connection to a telephone of a controlled access residential institution; a network router connected to the connection panel and configured to connect to a remote network; and an access and security module connected to the network router and configured to control access by the telephone to telephone services provided by accessing a remote call processing center via the remote network. The connection panel, the network router, and access and security module can be at least partially enclosed within a portable enclosure. The device may further comprise a power distribution unit within the enclosure and connected to provide power to the network router and to the access and security module.
US10284697B2
A terminal device, including a screen, a first camera, and a movement mechanism, where the first camera is disposed on a movable component of the movement mechanism, the movement mechanism is disposed on the back of the screen, and the movable component is configured to drive the first camera to move from the back of the screen to a position at which the first camera can be seen from in front of the terminal device.
US10284693B2
A remote controller includes a remote controller body including one or more control devices, a holding mechanism configured to move with respect to the remote controller body to switch between an extended state and a contracted state, a connecting mechanism movably connecting the holding mechanism to the remote controller body, and an antenna provided at a side of the remote controller body and rotatably connected to the remote controller body to be extended or folded. The holding mechanism includes a handle connected to the connecting mechanism. The handle is located outside the remote controller body in the extended state. The remote controller is configured to control an unmanned aerial vehicle (UAV).
US10284687B2
A method of processing, at a web server, a long-polling between a client and a service server configured to provision a service to the client over a network includes: receiving, at the web server, a poll request from the client; transmitting, via the web server, the poll request to the service server; receiving, at the web server, a poll reply to the poll request from the service server; generating, at the web server, webpage data based on the data in the poll reply; and transmitting, via the web server, the webpage data to the client as the poll reply. The poll reply received at the web server includes data to be applied in association with the client.
US10284674B2
Disclosed are systems and methods for performing consistent request distribution across a set of servers based on a request Uniform Resource Locator (URL) and one or more cache keys, wherein some but not all cache keys modify the content requested by the URL. The cache keys include query string parameters and header parameters. A request director parses a received request, excludes irrelevant cache keys, reorders relevant cache keys, and distributes the request to a server from the set of servers tasked with serving content differentiated from the request URL by the relevant cache keys. The exclusion and reordering preserves the consistent distribution of requests directed to the same URL but different content as a result of different cache key irrespective of the placement of the relevant cache keys and inclusion of irrelevant cache keys in the request.
US10284673B2
A network device includes an external subscription table, an interpreter, and a state machine. The external subscription table includes a subscription associated with a client. The interpreter is programmed to obtain the subscription; generate an entity, based on the subscription, that produces an output; and notify the client of the output. The state machine is programmed to send the output to the client based on the subscription.
US10284660B1
A service provider network offers various services to users. Some of the services may be stateless services. Data flow tokens may be generated and embedded in packets that are provided to the various services. A data flow token uniquely identifies the data flow for a set of services that are invoked by, for example, an application programming interface (API) call to the service provider network. The various services that are invoked as part of a common data flow write diagnostics data to a diagnostics log service. The diagnostics data may include the data flow token as well as a time stamp when the service was invoked and a time stamp when the service completes. The time stamps can be used to determine the period of time that the service took to execute. Analysis of the execution times can assist in, for example, auto-scaling the services for better performance.
US10284650B2
A computer-implemented method for supervising data stream storage including communicating with a probe that captures network data and outputs a plurality of data streams to a plurality of data repository units, receiving registration data associated with respective data streams that identifies the associated probes, selecting at least one of the data repository units to store the first data stream in real time based on a storage capacity of the data repository units to receive and store data, determining that storage capacity is not sufficient for the data stream in response to a change in the storage capacity of the data repository units to receive and store data, determining a corrective action in response to the determination that the storage capacity is not sufficient, and notifying the probe identified in association with the first data stream about the corrective action.
US10284644B2
Processing methods and systems for multi-display. The implementations may include establishing, by a computing device, a connection between a controlling terminal and an accessory display device. The computing device may receive activity ID information of a current presentation from the controlling terminal using the established connection, establish a mapping between the current presentation and the accessory display device based on the activity ID information, and transmit a presentation content associated with the current presentation to the accessory display device for display based on the mapping.
US10284643B2
Systems and methods of cloud deployment optimization are disclosed. In some example embodiments, a method comprises running original instances of an application concurrently on original servers to implement an online service, receiving, by the original instances of the application original requests for one or more functions of the online service, receiving a command to deploy a number of additional instances of the application, transmitting synthetic requests for the function(s) of the online service to one of the original servers according to a predetermined optimization criteria, deploying the number of additional instances of the application on additional servers using a copy of the original instance of the application, and running the deployed additional instances of the application on their corresponding additional servers concurrently with the original instances of the application being run on their corresponding original servers.
US10284641B2
Obligatorily-acquired digital content items are stored under service control in one or more local storage machines of a computer based on service commands provided by a centralized management service; and voluntarily-acquired digital content items are stored under user control in the one or more local storage machines of the computer based on user commands. The obligatorily-acquired digital content items are protected from user-commanded deletion. The obligatorily-acquired digital content items are deleted from the one or more local storage machines based on service commands provided by the centralized management service. However, the voluntarily-acquired digital content items are deleted from the one or more local storage machines based on user commands.
US10284631B2
A Management-as-a-Service (MaaS) agent running on a SOPS creates collecting management statistics relating to the health, utilization, and performance of a subscriber on-premises system (SOPS). The MaaS agent forwards the collected data to a MaaS server, which stores the data in association with a tenant identifier (TID) in a multi-tenant database. The MaaS server tags user queries with the TID, so that the query result is based on management data for the respective SOPS, to the exclusion of SOPS associated with different TIDs. The use of multi-tenant techniques with non-multi-tenant SOPS allows one MaaS to manage plural SOPS while maintaining isolation of the management data for the respective SOPS. In addition, the use of multi-tenant techniques allows SOPS to be managed together with cloud-based subscriber applications, facilitating common management of hybrid cloud and on-premises systems.
US10284623B2
Implementations optimize a browser render process by identifying content neutral embedded items and rendering a web page without fetching the content neutral items. An example method includes identifying a URL pattern common to a plurality of URLs stored in fetch records and selecting a sample of URLs from the plurality. The method also includes, for each URL in the sample, determining whether the URL is optional by generating a first rendering result using content for the URL and a second rendering result without using the content for the URL and calculating a similarity score for the URL by comparing the first rendering result and the second rendering result, the URL being optional when the similarity score is greater than a similarity threshold. The method may also include storing the URL pattern in a data store of optional resource patterns when a majority of the URLs in the sample are optional.
US10284602B2
Described herein are embodiments for managing policies of a mobile device. In embodiments, a mobile device receives policy containers from a plurality of disparate management agents. Each policy container has one or more policies. Each policy corresponds to a particular category that governs various aspects of the device. The policies described herein may be device wide policies corresponding to various features on the device. The policies may also be data specific policies which dictate how data is stored on and transferred to and from the device. Once the policies are received, a determination is made as to which policy in each category is the most secure policy. The most secure policy for each category is merged to create a global policy that is applied to the mobile device.
US10284599B2
A method for detecting an attack on a work environment connected to a communication network includes: electronically emulating, by a network security device connected to the communication network, the work environment; registering, by the network security device, network traffic; comparing, by the network security device, the registered network traffic with predefined network traffic; and triggering, by the network security device, a first attack warning signal in the event of a deviation between the registered network traffic and the predefined network traffic.
US10284598B2
In general, in one aspect, a system for providing honeypot network services may monitor network activity, and detect network activity indicative of network service discovery by a first device, for example, port scanning. The system may present a temporarily available network service to the first device in response to detecting the activity indicative of port scanning, for example, by redirecting traffic at an unassigned network address to a honeypot network service. The system may monitor communication between the first device and the presented honeypot network service to determine whether the monitored communication is indicative of a threat, and determine that the first device is compromised based on the monitored communication between the first device and the presented honeypot network service. The system may initiate measures to protect the network from the compromised first device.
US10284597B2
A system and method for determining whether an e-mail originates from a sender authorized by an address provider to send the e-mail to an intended recipient's e-mail address. The e-mail identifies an address provider from which the intended recipient's e-mail address was obtained. The e-mail is delivered to the intended recipient only upon verification that the sender is authorized by the address provider to obtain the intended recipient's e-mail address. The system and method may also provide for determining whether an e-mail originates from a forged source. A server receives data relating to an e-mail, including a purported sender and a verification host. The server queries the verification host with information pertaining to the e-mail and requests confirmation that the e-mail originates from the purported sender. The e-mail is determined to originate from a forged source unless the verification host responds that the e-mail originates from the purported sender.
US10284595B2
The present disclosure is directed towards systems and methods for evaluating or mitigating a network attack. A device determines one or more client internet protocol addresses associated with the attack on the service. The device assigns a severity score to the attack based on a type of the attack. The device identifies a probability of a user account accessing the service during an attack window based on the type of attack. The device generates an impact score for the user account based on the severity score and the probability of the user account accessing the service during the attack window. The device selects a mitigation policy for the user account based on the impact score.
US10284588B2
In one embodiment, a method for assessing security posture for entities in a computing network is implemented on a computing device and includes: receiving behavior data from one or more of the entities, where the behavior data is associated with at least activity on the computing network by the one or more entities, calculating a risk score for at least one of the entities by comparing the behavior data with a classification model, where the classification model represents at least a baseline for normative network behavior by the entities in a computing network, assessing a security posture for the at least one the entities based on the risk score, and allocating network security resources to the at least one of the entities at least in accordance with the security posture.
US10284584B2
A method (and structure) includes receiving, as input data into a computer-implemented processing procedure, at least one listing of at least one of time series data and potential candidate periods of potential beaconing activity. The input data is processed, using a processor on a computer, to evaluate the input data as if the input data represents data points of an input analog signal subject to principles of communication theory and having determinable statistical characteristics.
US10284583B2
An information processing system, having one or more information processing apparatuses, includes a data input unit configured to take as input first data being multidimensional; a dimension reduction unit configured to generate, based on the first data, second data representing a characteristic of the first data, the second data having a prescribed number of dimensions fewer than a number of dimensions of the first data; and a distinguishing unit configured to distinguish whether the first data is normal data or abnormal data by a semi-supervised anomaly detection, based on the first data and the second data.
US10284577B2
The present application discloses a method and an apparatus for file identification. The method for file identification comprises: determining a virus family of each malicious file sample in a plurality of the file samples resulting in a plurality of virus families; dividing the plurality of the virus families into at least one sample group based on a number of the malicious files belonging to each of the plurality of virus families; training the malicious file samples in each of the at least one sample group with a different training rule to obtain at least one file identification model; and determining, using the at least one identification model whether a file is a malicious file. The method for file identification of the present application may provide different identification models for various types of malicious files and thus improves the accuracy of the file identification.
US10284564B1
The disclosed computer-implemented method for dynamically validating remote requests within enterprise networks may include (1) receiving, on a target system within an enterprise network, a request to access a portion of the target system from a remote system within the enterprise network, (2) performing a validation operation to determine whether the remote system is trustworthy to access the portion of the target system by (A) querying an enterprise security system to authorize the request from the remote system and (B) receiving, from the enterprise security system in response to the query, a notification indicating whether the remote system is trustworthy to access the portion of the target system, and then (3) determining whether to grant the request based at least in part on the notification received from the enterprise security system as part of the validation operation. Various other methods, systems, and computer-readable media are also disclosed.
US10284561B2
A method of providing an image Completely Automatic Public Turing test to tell Computers and Humans Apart (CAPTCHA), and a server thereof. The method includes: outputting an image CAPTCHA including a plurality of images including a determination object image; receiving an image selection from the image CAPTCHA; determining whether a test of the image CAPTCHA is passed, based on the received image selection; and determining what the determination object image means. The images include a first group of images used to determine whether an accessing party passes the image CAPTCHA test and a second group of images unused to determine whether the accessing party passes the image CAPTCHA test. The second group includes the determination object image. The determining of the pass of the image CAPTCHA test is performed by selecting an image representing a correct or incorrect answer from the first group.
US10284557B1
An apparatus in one embodiment comprises a plurality of host devices configured to support execution of applications on behalf of one or more tenants of cloud infrastructure. The apparatus further comprises a secure data proxy implemented utilizing at least one of the host devices. The secure data proxy comprises non-persistent storage configured to store data required for execution of at least one of the applications. The data is obtained by the secure data proxy from persistent storage in a storage system external to the cloud infrastructure. The secure data proxy is configured to perform cryptographic operations in conjunction with transfer of the data between the persistent storage of the external storage system and the non-persistent storage of the secure data proxy. The secure data proxy may be further configured to perform deduplication operations in conjunction with transfer of the data between the persistent storage and the non-persistent storage.
US10284553B2
In a communication system in which a relay apparatus, a terminal apparatus, and other apparatuses, which can communicate with an authentication apparatus, are coupled through a communication path, the relay apparatus, and the terminal apparatus have unique authentication information, respectively. The relay apparatus transmits its own authentication information and authentication information collected from the terminal apparatus to the authentication apparatus. The authentication apparatus determines whether the relay apparatus and the terminal apparatus are authentic apparatuses based on the received authentication information. The relay apparatus shuts down communication between itself and an apparatus determined to be unauthentic based on a result of the determination, and transmits communication control information to shut down communication with the apparatus determined to be unauthentic to the terminal apparatus. The terminal apparatus shuts down the communication between itself and the apparatus determined to be unauthentic based on the communication control information.
US10284552B1
Systems and methods for using micro accelerations as a biometric factor for multi-factor authentication, the method including receiving, filtering, and determining an identifying pattern from micro acceleration data representative of the user, storing the identifying pattern for later use in authenticating the identity of the user, and using the identifying pattern as one factor in a multi factor authentication.
US10284551B2
Systems and methods for a authenticating a user on an alien electronic device is described. The system may include a first device associated with a first user and a second device associated with a second user. The first device may include a non-transitory memory and one or more hardware processors coupled to the non-transitory memory and configured to read instructions from the non-transitory memory to cause the first device to perform operations that include receiving from the second user, an identification data of the second user, determining that the identification data of the second user does not correspond to the first device, searching for the second device associated with the identification data of the second user, receiving an indication from the second device confirming that the identification data of the second user is associated with the second device, and initiating data communication between the first device and the second device.
US10284548B2
A method and system for strong remote identity proofing.
US10284544B2
Various embodiments are disclosed that relate to security of a computer accessory device. For example, one non-limiting embodiment provides a host computing device configured to conduct an initial portion of a mutual authentication session with an accessory device, and send information regarding the host computing device and the accessory device to a remote pairing service via a computer network. The host computing device is further configured to, in response, receive a pairing certificate from the remote pairing service, the pairing certificate being encrypted via a private key of the remote pairing service, and complete the mutual authentication with the accessory device using the pairing certificate from the remote pairing service.
US10284542B2
Mechanisms are provided, in a communication device associated with a first computing device, for capturing security data exchanged between the first computing device and a second computing device. The mechanisms receive a data message from either the first computing device or the second computing device. The data message is part of an operation for establishing a secure communication connection between the first computing device and the second computing device. The mechanisms filter the received data message for security data passed in the received data message and mirror the security data to an analysis port of the communication device. Moreover, the mechanisms output, via the analysis port, the security data to a data collection and analysis system that analyzes the security data with regard to security requirement compliance.
US10284537B2
Methods, systems and media for presenting information related to an event based on metadata are provided. In some implementations, the method comprises: detecting that a user-initiated event has been performed on a user device; detecting a plurality of sensors connected to the user device; causing a plurality of content items related to the user-initiated event to be obtained using the plurality of sensors connected to the user device; determining whether each of the plurality of content items is to be associated with the user-initiated event based on user device information from a plurality of data sources; associating a portion of the plurality of content items with the user-initiated event based on the determination; retrieving information related to the portion of the plurality of content items; detecting, using the plurality of sensors connected to the user device, a second plurality of content items; determining that at least one of the second plurality of content items is related to at least one of the first plurality of content items; and causing information related to the user-initiated event to be presented by the user device based at least in part on the determination.
US10284526B2
Systems, devices, and methods are disclosed for selectively decrypting SSL/TLS communications. Contents of the decrypted communications that may result in some action; for example, to terminate the communications, or to log and store the plaintext packets of the communications for subsequent content inspection and analysis. A SSL/TLS proxy may examine the information contained in the TLS handshake protocol and/or examine other information associated with the connection. Based on the examination, a proxy may determine whether or not to decrypt the encrypted communications. The proxy may take additional actions based on content inspection.
US10284520B2
Presented herein are techniques for mitigating a domain name system (DNS) amplification attack. A methodology is provided including receiving, at a (DNS) server, a DNS request, determining whether the DNS request has a source IP address that matches a predetermined source IP address and a port number that falls within a predetermined port range. When the DNS request has a source IP address that matches the predetermined source IP address and a port number that falls within the predetermined port range, determining whether the DNS request includes validation information. Based on the presence or content of the validation information, determining whether the DNS request is a valid DNS request, and dropping the DNS request when it is determined that the DNS request is not a valid DNS request.
US10284516B2
Systems, methods, architectures, mechanisms or apparatus for monitoring DNS services by causing one or more client devices to resolve a unique Fully Qualified Domain Name (FQDN) to collect query records useful in determining client device and DNS service host address and location information.
US10284514B2
Disclosed aspects relate to obtainability management in a social networking environment. A set of target recipients of a message may be detected in the social networking environment. A set of obtainability data may be ascertained with respect to the set of target recipients using the social networking environment. A message modification action may be determined using the set of obtainability data with respect to the set of target recipients. The message modification action may be performed in the social networking environment.
US10284513B2
Disclosed aspects relate to obtainability management in a social networking environment. A set of target recipients of a message may be detected in the social networking environment. A set of obtainability data may be ascertained with respect to the set of target recipients using the social networking environment. A message modification action may be determined using the set of obtainability data with respect to the set of target recipients. The message modification action may be performed in the social networking environment.
US10284509B1
A server includes volatile and non-volatile memories for storing messages received from a client device. A message reception module of the server stores a message received from a first client device in the volatile memory for an extended time period based on an indicator included in the message. The message reception module deletes the message from the volatile memory based on detection of a triggering event or stores the message in the non-volatile memory based on not detecting the triggering event before the extended time period has expired. The triggering event may include the message having been read by all specified recipients of the message. The indicator may be included in the message based on a relationship of the message to other messages. The message including the indicator may be related to other messages as part of a same conversation that has been determined to be suitable for short-term storage.
US10284508B1
A server has a processor and a memory storing instructions executed by the processor to maintain an ephemeral gallery of ephemeral messages, where each ephemeral message is a photograph or a video. An ephemeral message is posted to the ephemeral gallery. The ephemeral message has an associated message duration parameter and a gallery participation parameter. An ephemeral message is removed from the ephemeral gallery in response to the identification of an expired gallery participation parameter. The ephemeral gallery is eliminated upon expiration of either a gallery timer or upon expiration of the gallery participation parameter of a last message posted to the ephemeral gallery. The ephemeral gallery is preserved in response to a gesture applied to an indicium to save the ephemeral gallery to produce a preserved gallery.
US10284504B2
A method, apparatus, and system are disclosed that provide an approved address couplet listing for communication handling. An inbound communication including sender and recipient field entries may be compared as a pair or couplet against the listing to determine whether the inbound communication should be discarded, subjected to additional (spam related) processing, or forwarded for storage or delivery purposes. The comparison may take place in conjunction with one or more hashing functions.
US10284502B2
A host connected to at least one data network has a processor having a plurality of cores, and a memory. A network interface controller is coupled to the host, and configured to transmit and receive data packets via multiple distinct physical ports. The host and the network interface controller are cooperative upon receiving a packet for storing the packet in a receive buffer of the memory, deciding in the host, responsively to a destination identifier in the packet, to forward the packet from the host to the at least one data network via another one of the physical ports, and selecting one of the cores to perform a send operation.
US10284489B1
In a computer-implemented method for managing network resources within a server cluster, a request for provisioning of an application to be executed by the server cluster may be received. A required amount of bandwidth for the application, and a resource allocation of network bandwidth for the application, may be determined. The application may be provisioned to a network resource within the server cluster with the resource allocation of network bandwidth. It may be determined that an additional application, which utilizes bandwidth in bursts, is to be provisioned to the server cluster. It may further be determined that the server cluster can support bandwidth requirements of the additional application, at least in part by determining that one or more applications currently provisioned to the server cluster are also utilizing bandwidth in bursts. The additional application may then be provisioned to another network resource within the server cluster.
US10284486B2
In accordance with an embodiment, described herein is a system and method for resource isolation and consumption in an application server environment. The system can provide, at one or more computers, including an application server environment executing thereon, a plurality of resources which can be used within the application server environment, and one or more partitions, wherein each partition provides an administrative and runtime subdivision of a domain. The system can also configure a resource consumption management module to monitor each partition's usage of the plurality of resources. The resource consumption management module can comprise at least one member of the group consisting of resource reservations, resource constraints, and resource notifications.
US10284478B2
A packet processing device includes: a storage unit that holds an action table including actions that define processing contents of packets and a rule table including rules to search for actions to be applied to packets; a rule control unit that updates rules included in the rule table; and a packet processing unit that searches the action table for an action to be applied to a received packet using the rule table, processes the packet in accordance with the searched action, and accumulates a pointer with respect to the searched action, wherein the packet processing unit determines whether the rule table has been updated by the rule control unit after accumulation of the pointer and, if not updated, extracts an action to be applied to a received packet from the action table in accordance with the accumulated pointer.
US10284477B2
The present invention relates to methods and devices for indicating Quality of Service (QoS) of a message intended for a Machine Type Communication (MTC) device in a capillary network.Thus, provided is, i.e., a method at a core network node of determining QoS of a message intended for an MTC device in a capillary network. The method comprises receiving a message on a destination port, a number of which destination port indicates a required QoS with which the message should be sent towards the MTC device, and deriving the required QoS from the destination port number. The method further comprises transferring the message in accordance with the required QoS towards the MTC device.
US10284472B2
In one embodiment, a method includes receiving a request to add a prefix to memory for a route lookup at a forwarding device, the memory comprising a plurality of pivot tiles for storing pivot entries, each of the pivot entries comprising a plurality of prefixes and a pointer to a trie index, searching at the forwarding device, a dynamic pool of the pivot tiles based on a base-width associated with the prefix, allocating at least a portion of the pivot tile to the base-width and creating a pivot entry for the prefix and other prefixes with a corresponding base-width, and dynamically updating prefixes stored on the pivot tiles based on route changes to optimize storage of prefixes on the pivot tiles. An apparatus and logic are also disclosed herein.
US10284465B2
A switch includes multiple physical ports and forwarding circuitry. The physical ports are configured to receive and send packets over a network. The forwarding circuitry is configured to assign first port numbers to the physical ports, and second port numbers to temporary ports defined in addition to the physical ports, to receive a packet having a destination address via a physical port, to select, based on the destination address, an egress port number for the packet from among the first and second port numbers, to forward the packet to a physical port corresponding to the egress port number if the egress port number is one of the first port numbers, and, if the egress port number is one of the second port numbers, to map a temporary port associated with the egress port number to a mapped physical port and to forward the packet to the mapped physical port.
US10284464B2
A network device has a packet input unit, a checking unit, and a discovery unit. The packet input unit is configured to receive ingress packets. The checking unit is configured to determine whether identifying characteristics of received ingress packets match stored identifying characteristics of a packet flow that is stored in a memory, to perform a network action when the identifying characteristic of the received ingress packet matches the stored identifying characteristic. The discovery unit is configured to intercept an egress packet received from the control plane processor, the egress packet corresponding to the received ingress packet, to determine one or more differences in selected portions of a header portion of the received ingress packet resulting from processing at the control plane processor, and to store in the memory a new network action based on the one or more differences.
US10284462B2
In one aspect, a system for managing data processes in a network of computing resources is configured to: receive, from an instructor device, a parent request for execution of at least one parent data process executable by a plurality of computing resources at least one computing resource; generate at least one child request for execution of at least one corresponding child data process for routing to at least one corresponding destination device, each of the at least one child data process for executing at least a portion of the at least one parent data process, and each of the at least one child request including a respective destination key derived from at least one instructor key; and route each of the at least one child request to the at least one corresponding destination device. The at least one child request can be obtained by a supervisor server via the routing.
US10284461B2
A method and a related apparatus for probing a packet forwarding path, so that a packet forwarding path between any two devices can be probed is presented. A controller determines a source device and a destination device, where there is at least one intermediate device between the source device and the destination device; the controller sends an Internet Protocol (IP) packet that includes a probe identifier to the source device; the controller receives a first message sent by the destination device and a second message sent by the intermediate device; the controller determines a forwarding path of the IP packet according to the IP packet and a first inbound interface identifier that are sent by the destination device, the IP packet and a second inbound interface identifier that are sent by the intermediate device, and a network topology.
US10284460B1
Network packet tracing may be implemented on packet processors or other devices that perform packet processing. As network packets are received, a determination may be made as to whether tracing is enabled for the network packets. For those network packets with tracing enabled, trace information may be generated and the network packets modified to include the trace information such that forwarding decisions for the network packets ignore the trace information. Trace information indicate a packet processor as a location in a route traversed by the network packets and may include ingress and egress timestamps. Forwarding decisions may then be made and the network packets sent according to the forwarding decisions. Tracing may be enabled or disabled by packet processors for individual network packets. Trace information may also be truncated at a packet processor.
US10284447B2
The liveness of routing protocols can be determined using a mechanism to aggregate liveness information for the protocols. The ability of an interface to send and receive packets and the forwarding capability of an interface can also be determined using this mechanism. Since liveness information for multiple protocols, the liveness of interfaces, the forwarding capability of interfaces, or both, may be aggregated in a message, the message can be sent more often than could individual messages for each of the multiple protocols. This allows fast detection of failures, and sending connectivity messages for the individual protocols, such as neighbor “hellos,” to be sent less often.
US10284443B2
Various systems, methods, and programs embodied on a computer readable medium that facilitate monitoring of services and/or servers. In one embodiment, an amount of data is stored in at least one storage device, the data being generated by a plurality of services executed on a plurality of servers, and/or by the servers upon which the services are executed. A plurality of monitoring applications are executed in a monitoring server, the monitoring applications being configured to perform a plurality of monitoring functions with respect to at least a portion of the data to provide information associated with an operating condition of the services and/or the servers. An interface layer surrounds the monitoring applications in the monitoring server. The interface layer defines a messaging format that is used by external devices to interact with the monitoring applications.
US10284440B2
A network monitoring system that summarizes a plurality of data packets of a session into a compact session record for storage and processing. Each session record may be produced in real-time and made available during the session and/or after the termination of the session. Depending on protocols, a network monitoring system extracts different sets of information, removes redundant information from the plurality of data packets, and adds performance information to produce the session record. The network monitoring system may retrieve and process a single session record or multiple session records for the same or different protocols to determine cause of events, resolve issues in a network or evaluate network performance or conditions. The session record enables analysis in the units of session instead of individual packets. Hence, the network monitoring system can analyze events, issues or performance of the network more efficiently and effectively.
US10284431B2
Methods, systems, and computer programs are presented for managing a global network topology. One method includes an operation for generating, by a network device, a local topology identifying which network entities are connected to each external port of the network device. The network device is configured to execute a network device operation system (ndOS), and the network device is configured to share information associated with the local topology with other ndOS network devices that execute ndOS. Further, the method includes an operation for receiving one or more remote local topologies from respective one or more ndOS network devices. The network device generates a global topology based on the local topology and the one or more remote local topologies, where the global topology is shared by the network device and the ndOS network devices executing ndOS, and the global topology identifies which entities are connected to one or more of the ndOS network devices.
US10284430B2
Exemplary methods, apparatuses, and systems include a management server receiving, from each of a plurality of switches, physical topology data of network nodes. The physical topology data includes identifiers of hosts connected to each of the switches and identifiers of storage connected to each of the switches. The management server transmits a query to each of the network nodes and receives, in response to each query, the capabilities of each network node. In response to receiving a request to create a cluster of the hosts, the management server selects hosts and storage from the physical topology data to create the cluster. The hosts and storage are selected based upon the capabilities received from each network node. The management server determines transport protocol login service parameters based upon the received storage capabilities and transmits the parameters to one or more of the plurality of switches, hosts, and storage.
US10284429B1
Systems, methods, and computer-readable media are provided for modifying a network service of a requesting network member. A request, received from the requesting member, can include an identification of a sponsoring network member for a requested network service modification. A group can be generated and associated with the requesting member and with the sponsoring member. The group may also include a group policy referencing the requested network service modification. The sponsoring member can be provided with an activation key for activating the network service modification and a first network policy can be applied to the requesting member and a second network policy can be applied to the sponsoring member.
US10284428B2
A graphical policy interface architecture may enable simplified graphical development of customized policy logic for software controllers to control network services, connections, and devices. The policy logic based on graphical policy logic notation may be compiled and installed at run-time into a software controller.
US10284420B2
A method is provided in one example embodiment and may include maintaining, by a Diameter Routing Agent (DRA), an availability status for a plurality of network elements; receiving a request associated with a user equipment (UE) session, wherein a first network element of the plurality of network elements is serving the UE session; determining that the first network element serving the UE session is unavailable; and re-establishing the UE session at a second network element of the plurality of network elements that is available, wherein the re-establishing is performed without terminating the UE session.
US10284418B2
Certain aspects direct to systems and methods for network switch management via a management controller using a management information base (MIB) to JavaScript Object Notation (JSON) parser. At a computing device, an administrator provides a MIB file corresponding to a network switch to be managed. Then the administrator utilizes a parser application to parse the MIB file at the computing device to retrieve Object Identifiers (OIDs) from the MIB file, and then converts the OIDs to JSON objects, in order to generate parsed information of the MIB file including the JSON objects. Thus, the administrator may use a browser to access a web user interface at a management controller to upload the parsed information of the MIB file to the management controller. The management controller may then manage and configure the network switch through a Simple Network Management Protocol (SNMP) interface based on the parsed information of the MIB file.
US10284411B2
The present invention discloses a signal processing method and apparatus, and pertains to the field of communications technologies. The apparatus includes: a processor and a memory. The method includes: setting each sampling point signal on an orthogonal frequency division multiplexing OFDM symbol, and obtaining an input signal; calculating a constraint matrix according to a frequency selective fading channel characteristic; and calculating an output signal according to the sampling point signal, the input signal, and the constraint matrix. The present invention resolves a problem that frequency selective fading has an impact on transmission of the OFDM symbol, and a constraint matrix obtained according to a flat fading channel characteristic is not applicable to the OFDM symbol, thereby achieving an effect of reducing the impact of the frequency selective fading on the transmission of the OFDM symbol.
US10284404B2
Disclosed are a method and apparatus for scheduling a data channel to support a user equipment (UE) using various bandwidth parts (BWPs) in a next-generation/5G radio access network. According to one embodiment, a method may be provided for receiving a downlink (DL) data channel or transmitting an uplink (UL) data channel by a user equipment (UE). The method may include: receiving bandwidth part (BWP) setup information about a BWP set configured with one or more BWPs set up with regard to the UE from a base station (BS); and receiving DL control information (DCI) including information for indicating one among the one or more BWPs included in the BWP set configured by the BWP setup information from the BS, wherein a DL data channel is received or a UL data channel is transmitted through the one BWP indicated by the DCI.
US10284402B2
An apparatus for decoding a data modulated signal includes a signal receiver that receives a data modulated signal that is encoded with phase-shift keying (PSK) and provides an amplified signal corresponding to the data modulated signal, a tunable phase shifter that receives a local reference signal and a selected phase shift, applies the selected phase shift to the local reference signal to produce a phase shifted reference signal, a summing unit that sums the amplified signal and the phase shifted reference signal to produce a summed signal, an amplitude detector that determines an amplitude of the summed signal, and a symbol detector that varies the selected phase shift and determines a current symbol within the data modulated signal based on the amplitude of the summed signal as the selected phase shift is varied. A corresponding method is also disclosed herein.
US10284400B2
This ΔΣ modulator is a ΔΣ modulator using multiple integrators. The integrator: includes a plurality of stages of adder sequences, each of the adder sequences including a plurality of adders connected in series; performs feedback of a result of a second adder sequence as an input to a first adder sequence, the first adder sequence being a first stage of the plurality of stages, and the second adder sequence being a last stage of the plurality of stages; and processes inputs supplied to the plurality of adders of the first adder sequence and supplies it to the second adder sequence.
US10284395B2
A time-based decision feedback equalizer (TB-DFE) circuit may include a voltage-to-time converter configured to convert a communication signal into a time-based signal. A timing of when an edge of the time-based signal occurs is indicative of a voltage level of the communication signal. The circuit may include a plurality of delay circuits arranged to process the time-based signal in series to generate a delay data signal. The delay circuits may adjust the timing of when the edge of the time-based signal occurs, and a corresponding time delay introduced by each of the delay circuits may be based on a respective weighting factor applied to one or more samples of an output digital signal previously generated by the TB-DFE circuit. A phase detector may compare a timing of an edge of the delay data signal with a reference clock signal and generate the output digital signal based on the comparison.
US10284388B2
A communication system includes a transmission path and multiple nodes. At least one of the multiple nodes includes a second communication portion and a control portion in addition to a first communication portion. When the control portion performs a high speed communication, the control portion shifts the first communication portion included in each of the remaining multiple nodes to a sleep mode. The second communication portion performs a differential communication at a higher speed than the first communication portion using a differential signal. In the differential signal, a maximum of a potential difference between the pair of communication lines is equal to or less than a recessive threshold value, and a minimum of the potential difference between the pair of communication lines is a negative voltage value that has a polarity opposite to the recessive threshold value of the first communication portion.
US10284382B2
A network-accessible service enables participating end users to collaborate with one another over a network. End users have computing devices (e.g., computers, mobile phone, tablet devices, or the like) that include hardware and software to enable the device to access a network, such as the public Internet, a Wi-Fi network connected to the Internet, a 3G or higher wireless network connected to the Internet, a private network, or the like. The network-accessible service provides a publicly-available site (such as a Web site) or a local software application from which a first participating end user initiates a “meeting,” e.g., by selecting a “share” button. In response, the site or software application provides an HTTP link that includes a “meeting” code, which may be a one-time unique code. The first participating end user then shares the link with whomever he or she desires to collaborate. Upon receiving the link (e.g., by e-mail, instant message, SMS, MMS, orally, or the like), a second participating end user joins the meeting “on-the-fly” by simply selecting the link or navigating to the site and entering the “meeting” code (in a “join” field). The service connects the second participating end user to the meeting immediately and without requiring any registration, software download, or the like.
US10284377B2
There is provided a method for secure communications. The method includes a computing device receiving a notification comprising a message, a counter value, a signature signed by a signer and based on the message and the counter value, and an indication of the signer. The device obtains a current counter value based on an identity of the signer, checks the signature and compares the counter value with the current counter value; and, if the counter comparison and the signature checking is successful, accepting the message.
US10284374B2
An improved code signing method is provided. The code signing method includes receiving a build notification at a package builder utility and retrieving one or more remotely stored code images and build logs identified in the build notification, invoking a code signing module with the package builder utility to request a digital signature from a remote code signing system, combining the requested digital signature with a code image or a manifest file comprising hashes of multiple code images, and storing the signed code image or signed manifest file at a code repository.
US10284372B2
Processing information is disclosed including receiving an application retrieval request sent by a terminal, the application retrieval request including identifying information of the terminal, generating, based on a preset key generation technique, an encryption key based on the identifying information included in the application retrieval request, encrypting, based on the encryption key and a preset encryption technique, designated data in an application to obtain an encrypted application, and sending the encrypted application to the terminal.
US10284371B2
A system for preventing a brute force attack includes an output interface, an input interface, and a processor. An output interface is to provide a workfactor, a challenge token, and a login page to a client. An input interface is to receive a response token, a username, and a password. A processor is to determine whether the response token satisfies a condition based at least in part on the workfactor and determine whether the username and password are valid in the event that it is determined that the response token satisfies the condition based at least in part on the workfactor.
US10284363B2
A serial transmitter that outputs one symbol every unit interval (UI) from a data source is presented. The serial transmitter includes a serial output port that outputs one symbol every unit interval (UI) from a data source. The serial transmitter also includes a plurality of driver segments that jointly drive the serial output port. Each driver segment is configured to use one of N phases of a sampling clock to serialize and transmit data from the data source. Different sets of the driver segments are configured to use different phases of the sampling clock for serializing and transmitting data, the sampling clock being a half-rate clock having a period of two UI.
US10284357B2
A connection status detector of a controller determines that a two-wire cable is forward connected, in a case where a synchronization pattern of reception data completely coincides with a synchronization pattern for forward connection check. The connection status detector determines that the two-wire cable is reversely connected, in a case where the synchronization pattern of reception data completely coincides with a synchronization pattern for reverse connection check. A transmission data inverter reverses an uplink signal output from a transmission data processor, in a case where it is determined that the two-wire cable is reversely connected. A reception data inverter reverses a downlink signal output from a reception driver, in a case where it is determined that the two-wire cable is reversely connected.
US10284350B2
A User Equipment (UE) for performing carrier aggregation is described. The UE includes a processor and instructions stored in memory that is in electronic communication with the processor. The UE determines an uplink control information (UCI) transmission cell in a wireless communication network with at least one frequency-division duplexing (FDD) cell and at least one time-division duplexing (TDD) cell. The UE also selects a first cell for FDD and TDD carrier aggregation. The UE further determines a set of downlink subframe associations for the first cell that indicate at least one UCI transmission uplink subframe of the UCI transmission cell. The UE additionally sends Physical Downlink Shared Channel (PDSCH) Hybrid Automatic Repeat Request Acknowledgement/Negative Acknowledgement (HARQ-ACK) information in the UCI transmission uplink subframe of the UCI transmission cell.
US10284347B2
An in band control channel is created between nodes of a communication network in which the nodes have limited capability of inspecting the payload of packets to be transported over the network. The in band control channel is created by transmitting a plurality of dummy packets, each dummy packet having one of a plurality of different predetermined lengths, the sequence of dummy packets defining a code corresponding to at least one control command.
US10284345B2
An apparatus and a apparatus method for controlling transmissions of base stations are proposed. In the method, the apparatus belongs to a set of apparatuses controlled by a common controller, transmits at least one control signal unique to the apparatus within a given area and transmits also a second control signal common to a set of apparatuses controlled by the same controller.
US10284343B2
Various features related to frequency hopping for broadcast/multicast transmissions for narrow band devices are described. To exploit frequency diversity, multicast transmissions may be frequency hopped. In an aspect, a UE maybe configured to receive a signal, e.g., from a base station, including at least one of a first hopping indicator indicating whether frequency hopping is enabled for a multicast control channel or a second hopping indicator indicating whether frequency hopping is enabled for a multicast traffic channel, and determine whether frequency hopping is enabled for the at least one of the multicast control or traffic channel based on the received signal. The UE may further determine at least one hopping pattern for receiving multicast transmissions in the at least one of the multicast control channel or the multicast traffic channel when the frequency hopping is enabled, and receive the multicast transmissions based on the determined at least one hopping pattern.
US10284342B2
Provided is a radio communication device which can make Acknowledgement (ACK) reception quality and Negative Acknowledgement (NACK) reception quality to be equal to each other. The device includes: a scrambling unit (214) which multiplies a response signal after modulated, by a scrambling code “1” or “e−j(π/2)” so as to rotate a constellation for each of response signals on a cyclic shift axis; a spread unit (215) which performs a primary spread of the response signal by using a Zero Auto Correlation (ZAC) sequence set by a control unit (209); and a spread unit (218) which performs a secondary spread of the response signal after subjected to the primary spread, by using a block-wise spread code sequence set by the control unit (209).
US10284332B2
A spur cancelation system includes error circuitry, inverse spur circuitry, and injection circuitry. The error circuitry is configured to generate an error signal based at least on a first transceiver signal in a transceiver signal processing chain. The inverse spur circuitry is configured to, based at least on the error signal, determine a gain and a phase of a spur signal in the transceiver signal and generate an inverse spur signal based at least on the gain and the phase of the spur signal. The injection circuitry is configured to inject the inverse spur signal to cancel a spur in a second transceiver signal in the transceiver signal processing chain.
US10284327B1
An energy sensing espionage detector is disclosed. The detector is designed to alert on compromised LED lighting sources used by spies on unsuspecting corporations and individuals. The detector counters one threat vector that is emerging from newly mandated energy policies to replace conventional lighting with energy efficient LED lighting. The detector senses that information is being transmitted by the light source using pulsed or modulated energy that is not detectable by the human eye.
US10284323B2
A wavelength division multiplexing (WDM) transceiver module comprising an optical port and an optical modulator is disclosed herein. The optical port includes a data transmit and receive optical fiber connector and a laser source-in optical fiber connector. The laser source-in optical fiber connector is configured to couple to a laser source external to the WDM transceiver module, and provide polarization alignment for a polarization-maintaining fiber. The optical modulator is configured to receive a laser output from the external laser source via the polarization-maintaining fiber and modulate the laser output based on analog electrical signals generated by a digital signal processor. The WDM transceiver module may not including an onboard laser source.
US10284301B2
A laser module can include: a laser chip having a plurality of laser diodes; a focusing lens optically coupled to each of the plurality of distinct laser diodes; and a photonic integrated circuit (PIC) having a plurality of optical inlet ports optically coupled to the plurality of laser diodes through the focusing lens. The laser module can include an optical isolator optically coupled to the focusing lens and PIC and positioned between the focusing lens and PIC. The laser chip can include a fine pitch laser array. The laser module can include a plurality of optical fibers optically coupled to an optical outlet port of the PIC. The laser module can include a hermetic package containing the laser chip and having a single focusing lens positioned for the plurality of laser diodes to emit laser beams there through.
US10284297B1
Provided is a base transceiver station (BTS) apparatus that enables a licensed-assisted access (LAA) service in a licensed band and an unlicensed band. The BTS apparatus includes a head end connected to a BTS for each of multiple bands and carriers through a radio frequency (RF) line and a remote portion connected to one of optic lines that are optically expanded from the head end.
US10284286B2
A multiuser communication system comprises multiple transmitters and a multiuser receiver that detects multiple transmissions via iterative soft interference cancellation. An initial acquisition module and single user decoder module are also described. The multiuser receiver acquires and subtracts known users in the residual signal before acquiring new users in the residual signal, which is performed iteratively until no new users are detected or a stopping criterion is met. To aid receiver acquisition, the transmitters insert discrete tones into the transmitted signals. These allow the multiuser receiver to obtain initial estimates of the frequency, time, gain, and/or phase offset for each user. To improve the quality of cancellation the receiver refines estimates of gain, time, frequency and phase offsets for each user after each iteration, and calculates time varying SINR estimates for each user. The multiuser receiver may be satellite based, may be a distributed receiver, or process users in parallel.
US10284276B2
Embodiments of the invention provide a decoder (10) for decoding a signal received through a transmission channel in a communication system, the signal carrying information symbols selected from a given set of values and being associated with a signal vector, the transmission channel being represented by a channel matrix. The decoder comprises: a sub-block division unit (12) configured to divide the received signal vector into a set of sub-vectors in correspondence with a division of a matrix related to said channel matrix; at least one weighting coefficient calculation unit (14) configured to calculate a sub-block weighting coefficient for each sub-vector, at least one symbol estimation unit (11) for recursively determining estimated symbols representative of the transmitted symbols carried by the data signal from information stored in a stack. The at least one symbol estimation unit is configured to apply at least one iteration of a sequential decoding algorithm, the sequential decoding algorithm comprising iteratively filling a stack by expanding child nodes of a selected node of a decoding tree comprising a plurality of nodes, each node of the decoding tree corresponding to a candidate component of a symbol of at least a part of the received signal and each node being assigned an initial metric. The symbol estimation unit is further configured to calculate a modified metric for at least one node of the expanded child nodes from the metric associated with the at least one node and from the sub-block weighting coefficient calculated for the sub-vector to which the at least one node belongs, symbol estimation unit being configured to assign the modified metric to the at least one node.
US10284263B2
A coordinated multipoint (CoMP) transmission radio network is provided. Each cell in the CoMP network may include antenna nodes distributed at different geographical locations and coupled to a common baseband processing unit. When operating a user device in the CoMP network, the device may register with a neighboring baseband unit and may be served using at least one antenna node. The device may receive reference signals from different antenna nodes in its vicinity, compute receive signal strength levels, and report the measurements to the corresponding baseband unit. The baseband unit may then switch appropriate antennas in/out of use based on the measured results. If desired, the device may be served using more than one antenna node that may or may not be part of the same cell.
US10284261B1
In accordance with one or more embodiments, an access point includes a first communication interface having: a first coupler configured to receive, via a first transmission medium, first guided electromagnetic waves from a first waveguide system of a distributed antenna system, wherein the first guided electromagnetic waves propagate along the first transmission medium without requiring an electrical return path; and also a first receiver configured to receive first data from the first guided electromagnetic waves. A data switch is configured to select first selected portions of the first data for transmission to at least one communication device in proximity to the access point.
US10284259B2
A distributed antenna and backhaul system provide network connectivity for a small cell deployment. Rather than building new structures, and installing additional fiber and cable, embodiments described herein disclose using high-bandwidth, millimeter-wave communications and existing power line infrastructure. Above ground backhaul connections via power lines and line-of-sight millimeter-wave band signals as well as underground backhaul connections via buried electrical conduits can provide connectivity to the distributed base stations. An overhead millimeter-wave system can also be used to provide backhaul connectivity. Modules can be placed onto existing infrastructure, such as streetlights and utility poles, and the modules can contain base stations and antennas to transmit the millimeter-waves to and from other modules.
US10284258B2
A method and system for detecting and diagnosing leaks and interferences in a cable network by detecting interferences through radio receivers and correlating with data extracted from the network elements. Interferences in a cable network are detected with a kit comprising an antenna, a radio receiver, a computer device, a global positioning system (GPS), and an application. The method includes moving the radio receiver within an area of coverage; receiving and recording a radio frequency (RF) measurement; detecting an interference point based on a signal level of the RF measurement; determining, with the GPS, a location of the interference point; and reporting the location of the interference point, as it is detected, to the application.
US10284253B2
“Tiered” groups of devices (tiered service radios) and/or licenses associated with the devices or users so as to provide a hieratical set of interference protection mechanisms for members of each tier of service are disclosed. Point-to-point and point-to-multipoint data links for any communication application, including wireless backhaul applications, are also disclosed. Exemplary systems, devices, and methods disclosed herein allow for the efficient operation of such a tiered service. Interference protection among tiered service devices belonging to one or more tiers of the service, from other devices within the same tier of service, or devices of other tiers of service, is disclosed. Identification of other devices of the same or differing tiers of service, and interference mitigation between other tiered service devices based upon intercommunication between the devices, and/or via a central registry database, are also disclosed.
US10284252B2
A transceiver (100) is disclosed for a communication node adapted to transmit a first signal to an other communication node and to receive a second signal from the other communication node. The transceiver comprises at least one antenna (110), at least one transmitter module (120), at least one receiver module (130), and a mode alternator (160). The at least one antenna is adapted to simultaneously transmit the first signal and receive the second signal, wherein the first and second signals have equal carrier frequencies and different polarizations. The second signal is for determining a channel characterization of a communication channel over which the second signal is received, and the channel characterization is for determination of one or more transmission parameters for the first signal. The mode alternator is adapted to alternate a mode of operation of the transceiver between at least a first and a second mode of operation. The first mode of operation comprises the transceiver transmitting the first signal using a first polarization and receiving the second signal using a second polarization, and the second mode of operation comprises the transceiver transmitting the first signal using a third polarization and receiving the second signal using a fourth polarization. Corresponding communication node, communication system, method and computer program product are also disclosed.
US10284229B2
A bit interleaver, a bit-interleaved coded modulation (BICM) device and a bit interleaving method are disclosed herein. The bit interleaver includes a first memory, a processor, and a second memory. The first memory stores a low-density parity check (LDPC) codeword having a length of 64800 and a code rate of 3/15. The processor generates an interleaved codeword by interleaving the LDPC codeword on a bit group basis. The size of the bit group corresponds to a parallel factor of the LDPC codeword. The second memory provides the interleaved codeword to a modulator for 64-symbol mapping.
US10284228B2
An apparatus and method for time interleaving corresponding to hybrid time interleaving mode are disclosed. An apparatus for time interleaving according to an embodiment of the present invention includes a twisted block interleaver configured to perform intra-subframe interleaving corresponding to time interleaving blocks; and a convolutional delay line configured to perform inter-subframe interleaving using an output of the twisted block interleaver.
US10284227B2
A parity puncturing apparatus and method for fixed length signaling information are disclosed. A parity puncturing apparatus according to an embodiment of the present invention includes memory configured to provide a parity bit string for parity puncturing for the parity bits of an LDPC codeword whose length is 16200 and whose code rate is 3/15, and a processor configured to puncture a number of bits corresponding to a final puncturing size from the rear side of the parity bit string.
US10284222B1
An analog-to-digital converter (ADC) device includes a delta-sigma modulator having at least one integrator and a quantizer configured to receive an output of the at least one integrator. The delta-sigma modulator also includes digital-to-analog converter (DAC) capacitor bank, a sampling capacitor bank, and a pre-charge capacitor bank, each selectively coupled to an input node of the at least one integrator. The delta-sigma modulator also includes a pre-charge signal generator coupled to the pre-charge capacitor bank. The pre-charge signal generator is configured to generate a pre-charge signal to charge the pre-charge capacitor bank based at least in part on an output code of the quantizer.
US10284221B2
A multibit flash quantizer circuit, such as included as a portion of delta-sigma conversion circuit, can be operated in a dynamic or configurable manner. Information indicative of at least one of an ADC input slew rate or a prior quantizer output code can be used to establish a flash quantizer conversion window. Within the selected conversion window, comparators in the quantizer circuit can be made active. Comparators outside the conversion window can be made dormant, such as depowered or biased to save power. An output from such dormant converters can be preloaded and latched. In this manner, full resolution is available without requiring that all comparator circuits within the quantizer remain active at all times.
US10284217B1
In accordance with embodiments of the present disclosure, a processing system may include multiple selectable processing paths for processing an analog signal in order to reduce noise and increase dynamic range. Techniques are employed to transition between processing paths and calibrate operational parameters of the two paths in order to reduce or eliminate artifacts caused by switching between processing paths.
US10284210B2
Embodiments include apparatuses, methods, and systems for open-loop voltage regulation and drift compensation for a digitally controlled oscillator (DCO). In embodiments, a communication circuit may include a DCO, an open-loop voltage regulator, and a calibration circuit. The open-loop voltage regulator may receive a calibration voltage and may generate a regulated voltage. The regulated voltage may be passed to the DCO. During a calibration mode, the calibration circuit may compare the regulated voltage to a reference voltage and adjust the calibration voltage based on the comparison to provide the regulated voltage with a target value. During a monitoring mode, the calibration circuit may receive a tuning code that is used to tune the DCO and further adjust the calibration voltage based on a value of the tuning code.
US10284206B2
An oscillator includes: an oscillation stage circuit that is connected between a first electrode and a second electrode of a resonator and performs an oscillation operation; a variable capacitance element that is connected to the first or second electrode of the resonator and adjusts an oscillation frequency; a bandgap reference circuit that generates a reference voltage having magnitude, which changes depending on the temperature, by using a resistor inserted in a current path through which a current having magnitude, which changes depending on the temperature flows; and a bias current generating circuit that generates a bias current of the oscillation stage circuit based on the reference voltage, and that, thereby, reduces a change in the oscillation frequency due to the temperature dependence of the impedance of the resonator or the temperature dependence of the sensitivity of the variable capacitance element.
US10284195B2
Devices, systems, and methods are described herein for a low static current semiconductor device. A semiconductor device includes a power transistor and a driving circuit coupled to and configured to drive the power transistor. The driving circuit includes a first stage having an enhancement-mode high-electron-mobility transistor (HEMT) and a a second stage that is coupled between the first stage and the power transistor and that includes a pair of enhancement-mode HEMTs.
US10284186B2
Apparatuses and methods for phase interpolating clock signals and for providing duty cycle corrected clock signals are described. An example apparatus includes a clock generator circuit configured to provide first and second clock signals responsive to an input clock signal. A duty phase interpolator circuit may be coupled to the clock generator circuit and configured to provide a first and second duty cycle corrected interpolated clock signals. A duty cycle adjuster circuit may be coupled to the duty phase interpolator circuit and configured to receive the first and second duty cycle corrected interpolated clock signals and provide a duty cycle corrected clock signal responsive thereto. A duty cycle detector may be coupled to the duty cycle adjuster circuit and configured to detect duty cycle error of the duty cycle corrected clock signal and provide the adjustment signals to correct the duty cycle error.
US10284182B2
A complementary signal path may include an amplifier circuit configured to receive a pair of complementary input signals and a data alignment circuit configured to output a pair of complementary output signals in response to the pair of complementary input signals. A control circuit may detect duty cycle distortion in the pair of complementary output signals and perform a duty cycle correction process to remove the distortion. To do so, the control circuit may search for target current amounts in response to the duty cycle distortion and inject a control current into the amplifier circuit at the target current amounts.
US10284178B2
Embodiments of radio frequency (RF) filtering circuitry are disclosed. In one embodiment, the RF filtering circuitry includes a common port, a second port, a third port, a first RF filter path, and a second RF filter path. The first RF filter path is connected between the common port and the second port and comprises a first pair of resonators and a first acoustic wave resonator. One of the first pair of resonators also includes a second acoustic wave resonator. The second RF filter path is connected between the common port and the third port. The second RF filter path includes a second pair of resonators. The first and second acoustic wave resonators of the first RF filter path increase roll-off greatly with respect to just an LC filter, and thereby allow for an increase out-of-band rejection at high frequency ranges.
US10284177B2
Aspects of this disclosure relate to providing over temperature protection for a filter in a radio frequency system. The filter can include an integrated temperature sensor. A power level of a radio frequency signal provided to the filter can be reduced responsive to an indication of temperature provided by the integrated temperature sensor satisfying a threshold.
US10284169B2
An object is to improve insulation in a bonding layer and to improve a bonding strength of a supporting body and piezoelectric single crystal substrate, in a bonded body having the supporting body made of a polycrystalline material or single crystal material, the piezoelectric single crystal substrate and the bonding layer provided between the supporting body and piezoelectric single crystal substrate, wherein the bonded body includes the supporting body, piezoelectric single crystal substrate and the bonding layer provided between the supporting body and piezoelectric single crystal substrate, and the bonding layer has a composition of Si(1-x)Ox (0.008≤x≤0.408).
US10284168B2
A bulk acoustic wave (BAW) resonator includes: an acoustic reflector disposed in a substrate; a lower electrode disposed over the acoustic reflector; a piezoelectric layer disposed over the lower electrode; and an upper electrode disposed over the piezoelectric layer. A contacting overlap of the lower electrode, the piezoelectric layer and the upper electrode over the acoustic reflector comprising an active area of the BAW resonator. An opening exists in the upper electrode in a region of the BAW resonator susceptible to unacceptable overheating.
US10284165B2
A variable phase shift circuit has a phase shifter including a first port and a second port; a through path including a first port and a second port; a first switch including a first common port and configured to select the first port of the phase shifter or the first port of the through path and to connect the first port or the first port to the first common port; and a second switch including a second common port and configured to select the second port of the phase shifter or the second port of the through path and to connect the second port or the second port to the second common port. Phase shift amounts between the first common port and the second common port are switched in accordance with selections made by the first switch and the second switch.
US10284158B2
Methods and systems are provided for volume interactions for connected playback devices. In an example implementation, a first playback device applies a state variable update associated with a group of playback devices comprising the first playback device and one or more second playback devices. The state variable update indicates a limited volume range associated with the first playback device. The first playback device renders audio content in synchrony with the one or more second playback devices. Rendering the audio content involves a subwoofer speaker of the first playback device rendering a bass frequency component of the audio content. The first playback device receives input data indicating a group volume adjustment for the group of playback devices and adjusting a playback volume of the first playback device based on the group volume adjustment and the limited volume range.
US10284146B2
An embodiment of a Doherty amplifier module includes a substrate, a first amplifier die, and a second amplifier die. The first amplifier die includes one or more first power transistors configured to amplify, along a first signal path, a first input RF signal to produce an amplified first RF signal. The second amplifier die includes one or more second power transistors configured to amplify, along a second signal path, a second input RF signal to produce an amplified second RF signal. The first and second amplifier die each also include an elongated output pad that is configured to enable a pluralities of wirebonds to be connected in parallel along the length of the elongated output pad so that the pluralities of wirebonds extend in perpendicular directions to the first and second signal paths.
US10284138B2
The solar tracker having a bidirectional limit switch device comprises at least one solar panel (10) supported on a pivoting structure (12) tiltable in opposite first and second directions about a rotation axis (13) by a DC electric motor (M) a controller (14) and an actuator (15) controlling actuation of the electric motor (M), an inclinometer (16) fixed to the pivoting structure (12) and connected to the controller (14) to detect an actual physical positive or negative tilt angle of the solar panel (10) with respect to a horizontal plane, and a feed circuit (17) to apply a voltage having a selected polarity to the actuator (15) to produce rotation of the electric motor (M) either in the first direction or in the second direction. The actuator (15) comprises MOSFET-type first and second actuator transistors (Q1, Q2), each having a drain terminal (D), a source terminal (S) and a gate terminal (G), the first and second actuator transistors (Q1, Q2) having the drain terminals (D) respectively connected to first and second terminals (A, B) of the electric motor (M), the source terminals (S) respectively connected to first and second output terminals (1, 2) of the feed circuit (17), and the gate terminals (G) connected via the controller (14) to the inclinometer (16), and first and second diodes (D1, D2) connected in parallel between the drain terminals (D) and the source terminals (S) of the first and second actuator transistors (Q1, Q2) providing a bypass current path from the source terminals (S) of the first and second actuator transistors (Q1, Q2) to the first and second terminals (A, B) of the electric motor (M), and wherein either the first or the second actuator transistor (Q1, Q2) is put in an off state causing stop of the electric motor (M) upon receiving a positive or negative limit signal delivered by the inclinometer (16) when tilting of the pivoting structure (12) reaches a positive or negative limit tilt angle (PLTA, NLTA), the bypass current path provided by the corresponding first or second diode (D1, D2) allowing the electric motor (M) to turn in an opposite direction when an inverted voltage is applied.
US10284136B1
Improved versions of flat flashings are used for waterproofing mounting hardware that holds photovoltaic solar panels on a roof; typically, such a roof is a pitched, composition shingle roof. The flashings are narrow in width, and have chamfered and/or rounded corners, and a variety of alignment marks printed on the flashing for aligning the flashing with adjacent shingles. The height/width aspect ratio of the flashing can range from 1.4 to 2.0, or more.
US10284125B2
A control for a multi-shaft turbine engine system using electrical machines seeks optimal system performance while accommodating hard and soft component limits. To accommodate the component limits, the control may generate a number of possible operating point options reflecting potential trade-offs in performance, lifting, efficiency, or other objectives.
US10284122B2
A compressor of a refrigeration appliance includes a motor, in particular a BLDC motor, and a controller for stopping the motor. The controller is configured to slow down the motor rotating in a first rotating direction until it comes to a standstill and to subsequently position the rotor relative to the stator, in a second rotating direction with a predetermined torque. A method for stopping a compressor of a refrigeration appliance is also provided.
US10284110B2
A power supply, including a primary pre-converter, coupled to supplying mains, configured to receive an AC voltage at low frequency and output a high DC voltage, and further configured to receive the high DC voltage and to output the alternating current; a primary converter, disposed on a primary side of the power supply, coupled to the high DC voltage from the primary pre-converter; an isolating transformer to receive the high frequency AC voltage and output a high frequency secondary AC voltage, and to receive a high frequency secondary AC current and to output primary high frequency AC current; and an output converter, on a secondary side of the power supply, wherein the output converter is configured to receive high frequency AC voltage from the isolating transformer and to output a DC voltage of a first or second polarity to an output, and wherein the output converter is configured to receive DC current of a first or second direction from the output and to output a high frequency AC current to the isolating transformer.
US10284106B1
An efficient, high density, inline converter module includes a power conversion circuit and an input wiring harness for connecting the input of the power circuit to a unipolar source. A second wiring harness or electrical connectors may be provided for connecting the output of the power conversion circuit to a load. Connections between a wiring harness and the power conversion circuit may comprise conductive contacts, configured to distribute heat. The power circuit may be over molded to provide electrical insulation and efficient heat transfer to external ambient air. A DC transformer based inline converter module may be used in AC adapter, vehicular, and power system architectures. An input connector for connecting the input wiring harness to the input source may be provided. In some embodiments the input source may be an AC source and the input connector may comprise a rectifier for delivering a rectified, unipolar, voltage to the input of the power conversion assembly via an input wiring harness. By separating the rectifier from the power conversion assembly, the power conversion assembly may be packaged into a smaller volume than would be required if the rectifier, and its associated heat loss, were included in the power conversion assembly.
US10284105B2
A power converter (1) includes: planar semiconductor modules (10) each having a resin sealing part (16) in which a semiconductor element (11), conductive members (12, 13, and 14), and a signal terminal (15) are sealed with a resin; a cooler (20) that holds the plurality of semiconductor modules (10) in a laminated manner; and a cover (30) that covers the semiconductor modules and the cooler, wherein at least a part of the resin sealing part (16) and the cooler (20) are supported by support media (41 and 42) that extend from the cover (30) so that facing parts of the resin sealing part and the cooler with respect to the cover (30) is positioned in proximity to the cover, and the conductive members and the signal terminal protrude from the resin sealing part in a direction away from the cover.
US10284103B2
A power converter includes first and second DC terminals between which the power converter is operable to generate a voltage difference. The power converter also includes a control unit that is configured to operate in a normal mode during normal operation of the power converter and in a fault mode when a fault occurs in a respective DC power transmission medium that is operatively connected in use to one of the first or second DC terminals. The control unit in the normal mode generates a normal operating voltage difference between the first and second DC terminals. The control unit in the fault mode generates a modified operating voltage difference between the first and second DC terminals while maintaining the respective voltage potential with respect to earth of the other of the first and second DC terminals. The modified operating voltage difference is lower than the normal operating voltage difference.
US10284096B2
A control circuit controls a switch of a switching current converter receiving an input quantity, with a transformer having a primary winding and a sensor element generating a sensing signal correlated to a current in the primary winding. The control circuit has a comparator stage configured to compare a reference signal with a comparison signal correlated to the sensing signal and generate an opening signal for the switch. The comparator stage has a comparator element and a delay-compensation circuit. The delay-compensation circuit is configured to generate a compensation signal correlated to the input quantity and to a propagation delay with respect to the opening signal. The comparator element generates the opening signal with an advanced timing correlated to the input quantity and to the propagation delay.
US10284095B1
A multi-phase DC-to-DC buck converter for receiving an input voltage and delivering an output voltage to a load by splitting the load current between a plurality of DC-to-DC buck converter cells. The converter includes a plurality of current sense circuits for sensing current in a respective converter cell, each of the current sense circuits configured to generate a respective current sense signal, an averaging circuit for receiving each of the respective current sense signals and generating an average signal, a plurality of imbalance detector circuits for comparing a respective current sense signal with the average signal and generating a respective current imbalance signal, and a plurality of ON time generators for activating a converter cell for a predetermined time interval and altering the predetermined time interval in accordance with a time integral of a respective current imbalance signal.
US10284083B2
A DC/DC converter includes a first low-voltage terminal point, a second low-voltage terminal point and a third low-voltage terminal point, and a first high-voltage terminal point and a second high-voltage terminal point. The first low-voltage terminal point and the first high-voltage terminal point are directly connected to one another, and an actively drivable switching element, a capacitor and a further switching element are connected in series between the first high-voltage terminal point and the second high-voltage terminal point. The capacitor is connected between the second low-voltage terminal point and the third low-voltage terminal point, a further capacitance is directly connected between the second low-voltage terminal point and the third low-voltage terminal point, and the further capacitance is decoupled from the capacitor at two terminals by two inductors, respectively.
US10284070B2
A voltage conversion device and a voltage conversion method are provided in which, even immediately after switching a switching frequency, it is possible to suppress fluctuation of output voltage and possible to output a constant voltage in a stable manner. When switching the switching frequency from a first frequency to a second frequency, a duty ratio is changed in a first cycle of a PWM signal immediately after switching so as to be smaller than the duty ratio before switching. The amount of change in this case is set such that a lower limit value of inductor current immediately after switching the switching frequency matches the lower limit value in a steady state. With this sort of change, an increase in the inductor current immediately after switching is suppressed, fluctuation of the output voltage is suppressed, and a stable constant voltage is outputted to a load.
US10284068B2
A linear actuator for an active engine mount of a vehicle has a stator with a coil that can be fed with electric current for generating an electromagnetic field and an actuating element that is mounted in axially movable fashion with reference to the stator. The actuating element comprises an armature and a ram extending in axial direction and is so mounted in the stator by means of at least one spring element that it can be moved axially in frictionless fashion when the coil is fed with current. The actuating element comprises a support element of a non-magnetic light-weight construction material extending in radial direction between the armature and the ram. Advantageously, the armature is provided only in such regions where there run magnetically relevant field lines of the electromagnetic field of the coil.
US10284064B2
A BLDC motor includes a stator and a rotor. The rotor includes a shaft, first and second end plates, a plurality of cores arranged between the first and second end plates, a plurality of magnets, and a housing. The cores are evenly spaced from each other in the circumferential direction. A space is formed between neighboring cores. Each space receives one magnet. The magnets are magnetized circumferentially such that side surfaces of the magnets have corresponding polarities. The housing is made of magnetically permeable material, surrounding and covering radially outer ends of the magnets and cores.
US10284061B2
Provided is a rotor (1) of a permanent magnet-type electric rotary machine, the rotor being able to restrain a decrease of a magnetic characteristic. A pair of endplates (6a, 6b) placed at both axial ends of a rotor core (3) are each provided with a pressing portion (10, 10) configured to abut with an outer peripheral side of an end of the rotor core (3) to apply a pressing force toward the other end plate.
US10284049B2
An electric motor including a labyrinth having a function for preventing foreign particles from entering an inside of the motor. A labyrinth member having a generally annular shape is fixed to a portion of a rotation shaft positioned on a front side than a front bearing with respect to an axis, by interference fit, etc., and the labyrinth member is configured to rotate integrally with the rotation shaft. The labyrinth member has at least one first opening formed on a front surface of thereof, and at least one second opening formed on an outer lateral surface thereof. The first opening and the second opening are fluidly communicated with each other within the labyrinth member.
US10284047B2
An exemplary electric motor includes a power entry compartment, a power connection compartment, a removable cover, and a sealing member positioned between the power entry compartment and the power connection compartment to create a moisture-tight seal between the power entry compartment and the power connection compartment. The removable cover at least partially encloses or seals the power entry compartment and the power connection compartment. The power entry compartment receives the electrical wires that power the electric motor. The sealing member between the power entry compartment and the power connection compartment includes at least one wire channel to allow wires that power the electric motor to enter the power connection compartment from the power entry compartment. The power connection compartment houses one or more components used to make the electrical connections between the electrical wires and the motor.
US10284041B2
To provide a stator of a motor having an insulating structure achieving insulation easily and reliably. A stator (1) of a motor comprises: a teeth unit (11) with a circular cylindrical part (111) having a circular cylindrical shape and multiple projection parts (112) spaced uniformly along an outer circumference of the circular cylindrical part (111) in a circumferential direction of the circular cylindrical part (111), the projection parts (112) projecting radially outwardly from the circular cylindrical part (111); multiple bobbins (13) having cylindrical shapes with hollow sections (133) through which the projection parts (112) of the teeth unit (11) are passed to be fitted in the hollow sections (133), the bobbins (13) having outer peripheries around which windings (14) are wound; a cylindrical external unit (12) arranged radially outside the teeth unit (11) and fitted to an outer circumference of the teeth unit (11) and the outer peripheries of the bobbins (13); and multiple first insulating parts (15) arranged to fill gaps between the circular cylindrical part (111) of the teeth unit (11) and the bobbins (13) and electrically insulating the teeth unit (11) and the windings (14).
US10284033B2
A rotor for a reluctance machine is provided. The rotor includes a soft magnetic element which is cylindrical in shape. The soft magnetic element has recesses forming flux barriers. At least part of the recesses are filled with an electrically conducting and magnetically non-conducting filler material such that a starting cage is formed in a peripheral region of the rotor. The ratio of the surface of the filled region of the flux barriers to the surface of the region of the unfilled flux barriers is at least 0.2 for at least one rotor cycle.
US10284024B2
The invention relates to a method and an apparatus for detecting at least one interfering body in a system for inductive energy transmission, wherein the system includes at least one primary coil unit, wherein the apparatus includes at least one interfering body detector means, wherein the at least one interfering body detector means includes at least one field coil means and at least one detector coil means which is assigned to the at least one field coil means, wherein the apparatus includes at least one evaluation means, wherein the interfering body is detectable depending on the state of coupling and/or the change in the state of coupling, wherein the apparatus includes at least one compensation means.
US10284014B2
A transceiving wireless power transmission device enclosure herein includes a transmitting and receiving coil, a receiving controller, a transmitting controller and a full-bridge switch connected to the transmitting and receiving coil and the receiving controller and the transmitting controller. When the full bridge switch determines that the transmitting and receiving coil is connected to the receiving controller or the transmitting controller. A near field communication (NFC) modulating unit is connected between the transmitting controller and NFC induction coil. The transmitting and receiving coil can optionally transmit or receive a wireless power according to an actual requirement, the NFC modulating circuit can determine whether an NFC circuit is formed on a receiving end of a smart phone or other electrical products. If the NFC circuit is formed on the receiving end, the transmitting controller is notified to activate an NFC protection to ensure that the NFC circuit can't be damaged.
US10284012B2
A system for high powered wireless power delivery and charging includes an electronic device having a wireless charging module. The wireless charging module includes a power management module, the power management module configured and executing instructions to enable and disable the power delivery or charging of the electronic device based on whether a valid charging circuit exists, the power management module additionally configured and executing instructions to prevent a detection of an invalid load.
US10283995B2
A battery charger and methods for magnetically transferring power from a power source to a battery is disclosed. A driver circuit outputs a modulated signal having a duty cycle from the power source to a sender-side circuit and across a space to a receiver-side tuned circuit. A sender-side sensor is configured to sense a parameter of the sender-side tuned circuit. The controller modifies the first duty cycle of the modulated signal based on the sensed parameter. A receiver-side circuit capable of determining charge status of the receiver side is also disclosed.
US10283992B2
An energy management system includes a power supply module, a charging module, an interface module and an energy management module. The power supply module provides an input power. The charging module generates, based on the input power, a first charge power and a second charge power in response to a first charge control signal and a second charge control signal. The interface module detects electrical energy stored in an energy storage device to generate a detection result. In response to the detection result, the energy management module determines an operating state of the energy storage device, and generates one of the first and second charge control signals.
US10283983B2
A charging station configured to charge a plurality of electronic devices, the charging station can include a charging cabinet having a first side, a second side, and a connecting member extending between the first and second sides; a first plurality of holes extending along the first side, the first plurality of holes being configured to receive a screw; a first plurality of slots extending along the second side, the first plurality of slots being configured to receive a tab; at least one shelf having a first end, a second end, and a shelf surface extending between the first and second ends, the first end of the shelf configured to be positioned adjacent the first side of the charging cabinet, the second end of the shelf configured to be positioned adjacent the second side of the charging cabinet, the at least one shelf including: a first tab extending from the second end of the at least one shelf, the first tab configured to be inserted into one of the first plurality of slots extending along the second side; and a shelf flange extending from the first end, wherein a first portion of the shelf flange and a first portion of the shelf surface define a first opening, and wherein the first opening is configured to receive the screw.
US10283980B2
When a voltage value of an electrical storage device becomes higher than a predetermined voltage value for identifying an overcharged state of the electrical storage device, calculation of a heat generation amount of the electrical storage device based on a current value is started. When the calculated heat generation amount is larger than a predetermined amount, it is determined that the electrical storage device is in an abnormal state (abnormal state related to heating). Because the electrical storage device enters an easily heated state when the voltage value becomes higher than the predetermined voltage value, the heat generation amount may be monitored by starting calculation of the heat generation amount. Once the voltage value becomes higher than the predetermined voltage value, irrespective of a high/low relationship between the voltage value and the predetermined voltage value, the abnormal state may be determined by monitoring the heat generation amount.
US10283976B2
A multifunctional data mobile power supply (01) and a charging method thereof are provided. The power supply includes a gear selection switch (02), a main control chip (03), a mobile power supply module (04) and an interface module (05). The gear selection switch is configured to select different operation modes for executing by an opening and/or closing operation. The main control chip is configured to detect a gear selection signal of the gear selection switch, and after the charging mode is selected, send an operation command to the mobile power supply module. The mobile power supply module is configured to charge an intelligent mobile terminal which the interface module is connected with after receiving the operation command. The interface module is configured to connect with the external device.
US10283971B2
Embodiments described herein may relate to a system comprising a power source configured to provide a signal at an oscillation frequency; a transmitter coupled to the power source, wherein the transmitter comprises at least one transmit resonator; one or more receivers, wherein the at least one receive resonator is operable to be coupled to the transmit resonator via a wireless resonant coupling link; one or more loads, wherein each of the one or more loads is switchably coupled to one or more respective receive resonators. The system includes a controller configured to determine an operational state of the system, wherein the operational state comprises at least one of three coupling modes (common mode, differential mode, and inductive mode), and is configured to cause the transmitter to provide electrical power to each of the one or more loads via the wireless resonant coupling link according to the determined operational state.
US10283967B2
A power system management device manages the operational states of a plurality of power systems each including a power generator and a power conditioner connected to each other, and can promptly inform a user of erroneous setting of configuration information. The management device stores configuration information in correspondence with each power system including a power generator (photovoltaic array) and a power conditioner connected to each other. The configuration information indicates the configuration of each power system and includes one or more configuration information elements set by a user. The management device determines whether the configuration information includes at least one configuration information element that has been possibly set erroneously using information obtained from the power conditioner of each power system, and outputs a message prompting verification and correction of configuration information determined to include at least one configuration information element that has been possibly set erroneously.
US10283965B2
A method for incorporating a non-operating station into an operating system in a multi-terminal flexible DC transmission system. The method includes selecting a STATCOM operation mode for the non-operating station; opening a bypass switch at an AC side and connecting a charging resistor to an AC line; closing the AC incoming-line breaker, and pre-charging a converter valve of the non-operating station through the resistor; closing the bypass switch after the pre-charging; selecting a constant-DC voltage control mode for the non-operating station to perform deblocking; controlling the difference between a non-operating station DC voltage value and an operating system direct voltage value to be within an allowable range; closing the pole-connection device at the DC side of a converter of the non-operating station; and switching the non-operating station from the STATCOM operation mode to a DC operation mode, and incorporating the non-operating station into the operating system.
US10283963B1
In general, the subject matter described in this disclosure can be embodied in a system that implements power supply protection. The system includes first circuitry, second circuitry, a first power supply that is configured to power the first circuitry, and a second power supply that is configured to power the first circuitry and the second circuitry. The system also includes a power supply sensor including an input that is connected to the first power supply, and an output. The system also includes a hysteresis buffer including an input that is connected to the output of the power supply sensor, and an output that is connected to the first circuitry in a configuration that transitions the first circuitry to a protected state as a result of the hysteresis buffer transitioning output states.
US10283955B2
This disclosure provides systems, methods, and apparatuses for current monitoring. For example, in a system that includes a first circuit breaker coupled to a primary power source and a second circuit breaker coupled to an alternative power source, there is provided an apparatus that includes a controller circuit configured to prevent back-feeding of power from the alternative power source to the primary power source via tripping the second circuit breaker, in response to the total current in the first and second circuit breakers exceeding a defined maximum level.
US10283954B2
A shield for spliced electrical connections includes a cover for T-tap electrical connections. In embodiments, the cover includes complementary halves designed to quickly and securely snap together when the halves are mated with each other to create a shield for a T-tap connection. Fully assembled, the shield provides sleeves that allow the cables being spliced to enter and/or exit the shield. Each of the sleeves is provided with an adhesive sealant that tightly seals the shield against contamination from the elements. Integrated with the cover are structural elements such as gussets that enhance the resistance of the shield to impact damage such as crushing. The shield may be molded from a polymer that, when cured, provides a rigid or semi-rigid cover that generally protects the t-tap connection from all types of environmental damage.
US10283952B2
A rapidly deployable floor power system includes a base unit for supplying low voltage DC power to one or more foldable power tracks. Each foldable power track has a set of rigid track sections with exposed track power contacts on a top surface. The rigid track sections are electrically and mechanically interconnected by flexible track connectors that enable the power track to be folded when the power track is to be moved or stored, and unfolded for rapid deployment in an area to be supplied with power. The rigid track sections lie approximately flush with the floor to minimize tripping potential. Magnetic connectors engage the track to obtain power from the track, and are used to electrically interconnect adjacent tracks. A power distribution unit supplies power via low voltage ports such as USB ports and/or via one or more power whips equipped with barrel jack tips.
US10283944B2
A control house includes a motor control center. The motor control center includes a body, and the body includes a face. The motor control center also includes a first orientation bucket that is configured to be disposed at least partially within the body at a first plurality of positions. The first position of the first plurality of positions extends a first distance from the face, and the first position of the first plurality of positions is configured to couple the first orientation bucket to first contacts. A second position of the first plurality of positions extends a second distance from the face that is greater than the first distance, and the second position of the first plurality of positions is configured to decouple the orientation bucket from the first contacts. Additionally, the second distance is less than or equal to 160 millimeters.
US10283942B1
A grounding bar is fashioned as having two (2) offset planar surfaces joined at opposite lengthwise sides by a common slanted wall. Each planar surface has a plurality of apertures disposed therein.
US10283941B2
An electrode of the spark plug includes a first melt portion formed between a body portion of an intermediate member and a noble metal tip; and a second melt portion that is formed, between a flange portion of the intermediate member and an electrode base material, at least at a position of intersection with an axial line of the noble metal tip. In a cross section including the axial line of the noble metal tip, when: a diameter of the noble metal tip is denoted by Tw; the shortest distance between the second melt portion and a boundary between the first melt portion and the intermediate member is denoted by S1; and the longest distance between the second melt portion and the boundary between the first melt portion and the intermediate member is denoted by S2, 1.0 mm≤Tw≤1.2 mm and (S2−S1)≤0.3 mm are met.
US10283940B1
A spark plug includes a housing, a center electrode disposed within the housing, and a ground electrode cooperating with the center electrode to generate a spark. The ground electrode further includes an arm having a main body and a base, a pad fixed to the base, and a covering affixed to at least one of the main body and the base. The main body is fixed to the housing. The covering alters a dielectric constant of the main body or a dielectric constant of the base to create a difference in the dielectric constant of the main body and the dielectric constant of the base and focus the spark on the pad.
US10283938B1
An optical device has a gallium and nitrogen containing substrate including a surface region and a strain control region, the strain control region being configured to maintain a quantum well region within a predetermined strain state. The device also has a plurality of quantum well regions overlying the strain control region.
US10283936B2
An apparatus that includes a gain chip assembly, an external cavity, and a controller is disclosed. The gain chip assembly includes first and second gain chips that are coupled optically such that light travels serially between the first gain chip and the second gain chip, each gain chip is electrically biased. The electrical bias of the first gain chip is independent of the electrical bias of the second gain chip. The external cavity has a tunable wavelength selective filter that is changed in response to a control signal. Light in the external cavity passes through the gain chip assembly. The controller determines the tunable wavelength selective filter, and the electrical bias of each of the gain chips so as to cause the apparatus to lase at a wavelength specified by a control signal to the controller.
US10283934B2
A semiconductor laser oscillator includes laser diode modules. A temperature sensor directly or indirectly detects a temperature of at least one of the laser diode modules. A collimating lens collimates respective lasers emitted from the laser diode modules. A grating performs spectrum beam coupling for the lasers emitted from the collimating lens. An incident angle varying mechanism changes incident angles of the respective lasers, at which the lasers emitted from the collimating lens are incident onto the grating in response to the temperature detected by the temperature sensor.
US10283929B2
Various embodiments may relate to a semiconductor laser device, including at least one laser diode, and at least one reflection surface which reflects diffusely and which is irradiated by the laser diode during operation, and an additional light-nontransmissive housing body having a cutout. The laser diode is the sole light source of the semiconductor laser device. The laser diode is mounted immovably relative to the at least one reflection surface. Light emitted by the semiconductor laser device during operation has the same spectral components as, or fewer spectral components than, light emitted by the laser diode. An interspace between the laser diode and the at least one reflection surface is free of an optical assembly. A light-emitting area of the semiconductor laser device is greater than a light-emitting area of the laser diode by at least a factor of 100.
US10283919B2
In various implementations, a raceway system may provide power and/or data connectivity to one or more locations. The raceway system may include modular receptacles. The modular receptacles may include power sockets and/or modular communication sockets.
US10283913B2
An electrical connector with a shielding plate in which signal terminals and ground terminals supported by insulating members are arranged in an intermixed order, signal terminals have at least a portion in the longitudinal direction thereof covered by a shielding plate, and respective contact portions formed in free end portions at the front ends of the signal terminals and ground terminals are subject to contact pressure applied by the corresponding counterpart terminals to one side of said contact portions, thereby resulting in resilient flexure, wherein in the shielding plate, at positions corresponding to the ground terminals in the direction of terminal array, there are provided grounding strips parallel to said ground terminals, said grounding strips extend forward and, at least in a state of contact between the ground terminals and counterpart terminals, the other side of the ground terminals is in contact with and supported by the grounding strips.
US10283911B2
The present invention relates to methods and systems for minimizing alien crosstalk between connectors. Specifically, the methods and systems relate to isolation and compensation techniques for minimizing alien crosstalk between connectors for use with high-speed data cabling. A frame can be configured to receive a number of connectors. Shield structures may be positioned to isolate at least a subset of the connectors from one another. The connectors can be positioned to move at least a subset of the connectors away from alignment with a common plane. A signal compensator may be configured to adjust a data signal to compensate for alien crosstalk. The connectors are configured to efficiently and accurately propagate high-speed data signals by, among other functions, minimizing alien crosstalk.
US10283909B2
Connector latch used to securely hold together a connector apparatus, such that the connector apparatus has at least a first connector assembly and a second connector assembly which can be mated together. Initially, after the connector latch is manufactured, the connector latch is in an undeflected position. After manufacture, the connector latch is subjected to a pre-mating deflection process, in order to move the connector latch into a preloaded position. After the pre-mating deflection process has been completed, the connector latch is locked in the preloaded position. The preloaded connector latch provides a number of desirable characteristics, including at least an extra loud “click” sound when the first connector assembly and the second connector assembly are mated together.
US10283905B2
An electrical connector assembly includes a plug with a plug body having a contact holder portion and an annular locking ring attached to the plug body. An elastic element holds the locking ring in a rest position. The locking ring has a first recess at a first end that creates a guide surface. The assembly also includes a mating connector having a plug-receiving portion configured to receive the contact holder portion of the plug. The plug-receiving portion includes a collar having a projection which, when mating the electrical plug and mating connector, engages the guide surface and rotates the locking ring. The locking ring has a second recess at a second end. The projection and the second recess are in a plane perpendicular to the plug-in axis in fully assembled state. The spring force rotates the locking ring and locks the plug body with the plug-receiving portion.
US10283902B2
In a waterproof structure for a connector, in order to prevent that water is infiltrated into openings of cavities accommodating terminals, a pair of housings include resin annular members which protrude in a fitting direction to surround the openings. One annular member has a protrusion part which is formed on a way between a tip and a root thereof over an entire circumference. The protrusion part is formed to have a top part which presses an inner circumferential surface or an outer circumferential surface of the counterpart annular member at a time of fitting the pair of housings.
US10283888B2
Electrical connection element having a first flat part made of a metallic substrate and a metallic contact layer applied to one surface of the substrate. A reliable coating is possible through the substrate being friction coated with the contact layer.
US10283886B2
Stationary housings 20 involve stationary-side reinforcing fittings 80 secured in place in said stationary housings 20 via integral molding with said stationary housings 20 and, moreover, a movable housing involves movable-side reinforcing fittings 60, 70 secured in place in said movable housing 30 via integral molding with said movable housing. The stationary-side reinforcing fittings 80 involve exposed portions 82 exposed from the stationary housings 20 at locations outside the terminal array range of said terminals in the terminal array direction, and the movable-side reinforcing fittings 60, 70 involve expanded portions 63, 73 protruding from the movable housing 30 at locations outside the above-mentioned array range.
US10283882B2
A grounding clamp includes a safety lock-out which locks the operation of the clamp in the absence of a hot-stick. A clamping member cooperates with a frame having an arm, and is selectively biasable by a user to translate the clamping member relative to the frame to clamp a conductor between the clamping member and arm. The lock-out cooperates with the clamping member to prevent the translation of the clamping member unless in the presence of an insulating tool such as a hot-stick.
US10283879B2
An insulation displacement contact device comprises a blade assembly and a biasing element. The blade assembly has a plurality of blades disposed opposite one another each with a cutting edge. The cutting edges of the blades terminate into a contact slot disposed between the blades. The blade assembly is disposed in the biasing element. The biasing element is movable with respect to the blade assembly along a moving direction parallel to the contact slot.
US10283868B1
A tunable patch antenna includes a dielectric substrate having first and second surfaces. An electrically-conductive sheet is coupled to the first surface, and a patch assembly is coupled to the second surface. The patch assembly includes an electrically-conductive base fixedly coupled to the second surface and an electrically-conductive disk rotatably coupled to the substrate. The base has a substantially circular void wherein a perimeter region of the base circumscribes the void. The base has an electrically-conductive run extending from the perimeter region to a feedpoint location within the void. The disk has a diameter greater than a diameter of the void such that the disk is in contact with the perimeter region of the base. The disk has a slot cut through it that is aligned with a center of the disk.
US10283864B2
The present invention discloses an antenna and a terminal, which can extend antenna bandwidth. The antenna includes a capacitor component and at least one radiator, where one end of each radiator of the at least one radiator is connected to form a first node, the first node is connected to one end of the capacitor component to form a second node, and the second node is grounded; and the other end of the capacitor component receives a feed signal.
US10283857B2
An antenna assembly includes a curved printed circuit board (PCB) configured to mount around a curved surface. The curved PCB can include an outward-facing first side and an inward-facing second side with a plurality of antenna structures disposed on one of the first side and second side of the PCB. The plurality of antenna structures can be configured to provide directional radiation in at least one frequency band.
US10283854B2
An antenna system capable of operating among all LTE bands, and also capable of operation among all remote side cellular applications, such as GSM, AMPS, GPRS, CDMA, WCDMA, UMTS, and HSPA among others. The antenna provides a low cost alternative to active-tunable antennas suggested in the prior art for the same multi-platform objective.
US10283851B2
An antenna comprising: a solar collector; two conductive, orthogonal half-loops mounted to the solar collector such that the solar collector functions as a ground; an RF power source configured to feed RF power to each of the two half-loops having a 90-degree phase difference relative to each other; and a conductive cage structure surrounding the two half-loops, wherein the cage structure includes a conductive ring disposed above the center section, the conductive ring having an equilateral cross of conductive material disposed within the ring and supported by leg structures which are in electrically-conductive contact with the solar collector, and wherein each leg structure has attached thereto a non-Foster circuit having a negative impedance, wherein the non-Foster circuits are configured to actively load the cage structure such that the cage structure functions as an active, internal matching network for the antenna.
US10283850B2
Wireless wearable devices having self-steering antennas are disclosed. A disclosed example wearable device includes an antenna to be communicatively coupled to a wireless data transceiver of a base station. The disclosed example wearable device also includes a steering mount coupled to the antenna, where the steering mount is to adjust an orientation of the antenna towards a wireless coverage zone associated with the wireless data transceiver based on a movement of the wearable device.
US10283846B2
An electronic device is provided including a housing including a first plate, a second plate facing the first plate, and a side member between the first and second plate, a radio frequency (RF) circuit, a processor, a ground member, a first electric path connected between a first port of the RF circuit and a first point of a first conductive portion of the side member, a second electric path connected between a second port of the RF circuit and a first point of a second conductive portion of the side member, a third electric path connected between a second point of the first conductive portion and the ground member, a fourth electric path connected between a second point of the second conductive portion and the ground member, and a fifth electric path connected between one point of the second electric path and one point of the third electric path.
US10283832B1
A compact wideband RF antenna for incorporating into a planar substrate, such as a PCB, having at least one cavity with a radiating slot, and at least one transmission line resonator disposed within a cavity and coupled thereto. Additional embodiments provide stacked slot-coupled cavities and multiple coupled transmission-line resonators placed within a cavity. Applications to ultra-wideband systems and to millimeter-wave systems, as well as to dual and circular polarization antennas are disclosed.
US10283831B2
An RF filter includes: an electrical conductor defining an outer sphere; a dielectric material defining an inner sphere disposed within the conductor outer sphere; and at least a first electrical probe and a second electrical probe. Each probe extends through the conductor and is electrically insulated from it. A spherical shape of one or both of the inner and outer spheres is interrupted by: a) a first localized discontinuity in said spherical shape disposed along a first axis passing through a geometric center of the one or both of the inner and outer spheres; and b) a second localized discontinuity in said sphere form disposed along a second axis passing through the geometric center, the second axis perpendicular to the first axis. There can be more than these two discontinuities, implemented as chamfers, tuning screws, and the like. Series and parallel coupling of the spheres is detailed.
US10283824B2
A battery assembly according to a non-limiting aspect of the present disclosure includes, among other things, a housing, an array of battery cells provided within the housing, and a thermal exchange assembly adjacent the array and including an inlet, an outlet, and a tube configured to direct fluid from the inlet to the outlet. Further, the tube is overmolded with the housing. This disclosure also relates to a method of forming a battery assembly.
US10283823B2
Provided is an energy storage apparatus where a cooling fluid minimally leaks to the outside from a passage formed between an outer spacer and an energy storage device. The energy storage apparatus includes: an energy storage device; an outer spacer arranged adjacently to the energy storage device; and an end plate arranged such that the outer spacer is sandwiched between the energy storage device and the end plate, wherein the outer spacer includes: a base extending along the energy storage device, the base defining, with the energy storage device, a passage; and a seal portion projecting from the base and being in contact with the energy storage device, wherein the end plate includes a pressing portion disposed at a position corresponding to the seal portion, the pressing portion pressing the seal portion toward the energy storage device via the base.
US10283817B2
A battery pack including a battery cell assembly, the battery cell assembly having a battery cell with a first end and a second end. A circuit board is adjacent to the battery cell and extending from the first end to the second end. A first electrical connector is disposed at the first end and connects a first end of the circuit board to the first end of the battery cell. A second electrical connector is disposed at the second end and connects a second end of the circuit board to the second end of the battery cell. A third electrical connector is disposed at the first end of the circuit board, the third electrical connector can be electrically connected to a powered device so that power from the battery cell may be provided to the powered device through the third electrical connector. A housing houses the battery cell assembly.
US10283815B2
A method for producing a laminate for a battery in which a first active material layer and a solid electrolyte layer are stacked, includes irradiating the laminate with a laser from a side of the laminate faced by the first active material layer to remove a part of the first active material layer. The reflectance of the laser by the solid electrolyte layer is 80% or more.
US10283809B2
A lithium-ion battery system includes: a lithium-ion battery including a cathode and an anode, the cathode containing a lithium manganese-nickel complex oxide as a cathode active material, and the anode containing a lithium-titanium complex oxide as an anode active material; and a charge regulation means which regulates an end-of-charge voltage Vf within a range of 3.6 V≤Vf≤4.0 V.
US10283800B2
To provide a liquid composition capable of forming a catalyst layer that is excellent in resistance to hydrogen peroxide and peroxide radicals, can further increase the output voltage of a membrane/electrode assembly, and can maintain a high output voltage for a long period of time; a method for its production; and a membrane electrode assembly for a polymer electrolyte fuel cell using said liquid composition. Provided is a liquid composition to be used for forming a catalyst layer constituting an electrode of a membrane electrode assembly for a polymer electrolyte fuel cell, wherein the liquid composition comprises a liquid medium, a fluoropolymer (H) having sulfonic acid groups and ring structures, and trivalent or tetravalent cerium ions, and the content of the trivalent or tetravalent cerium ions is from 1.6 to 23.3 mol % to the sulfonic acid groups (100 mol %).
US10283795B2
A solid oxide fuel cell (SOFC) system including a steam reformer, a hydrogen purification system, a pre-reformer, and a solid oxide fuel cell.
US10283788B2
Fuel cell structure and method of producing electrical energy from a methanol-based initial material. The fuel cell structure is comprised of a fuel cell for decomposing hydrocarbon-based fuel in order to produce electrical energy, a fuel tank from which fuel can be fed into the fuel cell, and a treatment unit for decomposition products, into which unit it is possible to direct the decomposition products of the fuels. The fuel tank and the treatment unit are at least partly separated from each other by a movable wall, and the wall is arranged to move to even out the pressure difference and the volume difference between the fuel tank and the treatment unit. The movable wall makes it possible to remove disadvantageous pressure differences between the fuel tank and the treatment unit, in which case a continuous feed of fuel into the fuel cell is achieved, which feed continues until either the fuel is expended or the treatment of the decomposition products is brought to an end.
US10283786B2
A bipolar plate, which forms a first polar plate of a first base element of a fuel cell and a second polar plate of a second base element adjacent to the first base element of the fuel cell, includes two parallel plates. Each plate of the parallel plates includes at least one distribution channel formed in a thickness thereof, for distributing fuel or oxidant. Each distribution channel is arranged so that, when the first and second base elements of the fuel cell are stacked together, a flow channel is formed between the two parallel plates, and the flow channel communicates with a cooling fluid supply opening.
US10283780B2
An electrode for use in an electrochemical cell, especially a zinc-bromine flow battery or a hydrogen/bromine flow battery, and methods for manufacturing and using the electrode is provided. The electrode has a metal substrate and a catalytic coating applied onto the substrate wherein the catalytic coating has a Ru-rich mixture of ruthenium and having 70-80 mol % Ru, 1-5 mol % Pt and 17-25 mol % Ir. The catalytic coating composition exhibits a surprisingly high voltage efficiency and operating lifetime despite its relatively low Ir/Ru and Pt/Ru ratios. The underlying metal substrate is for example a porous Ti layer or a layer with titanium suboxides TixOy.
US10283777B2
Provided is a secondary battery that includes an electrode active material including an organic compound represented by the following General Formula 1. Ar—(OH)n In the General Formula 1, Ar denotes at least one selected from the group consisting of 1,1-binaphthalene, anthracene, triphenylene, tetraphenylene, and pyrene, and is optionally substituted with a substituent. The substituent of Ar is at least one selected from the group consisting of an OH group, a carbonyl group produced through oxidization of the OH group, an alkyl group containing 3 or less carbon atoms, a halogen atom, and an amino group. n denotes an integer in a range of from 2 through 8.
US10283774B2
A bipolar electrode is composed of a first active material layer which is, for example, a positive electrode active material layer formed to include a first active material on one side of a collector, and a second active material layer which is, for example, a negative electrode active material layer formed to include a second active material with less compressive strength than that of the first active material on the other side of the collector. Then, a density adjusting additive which is an additive material with larger compressive strength than that of the second active material is included in the second active material layer.
US10283771B2
A positive active material includes a compound represented by Chemical Formula 1, and the positive electrode including a positive active material and a rechargeable lithium battery including the same are provided. Li(1.33−0.67x−z)Mn(0.67−0.33x−0.5y)Ni(x−0.5y+z)M(y)O2 [Chemical Formula 1] Definitions of Chemical Formula 1 are the same as in the detailed description.
US10283770B2
A composite cathode active material, including a nickel-based lithium transition metal oxide secondary particle, the nickel-based lithium transition metal oxide secondary particle including a coating layer containing lithium and cobalt on a surface of a primary particle of the secondary particle.
US10283767B2
A method is described for producing silicon particles, in particular for an anode material of a lithium cell. In order to improve the cycle stability of lithium cells and to minimize losses in capacitance, in particular, microorganisms are dispersed in at least one solvent in a method step a), the solvent including at least one silicon compound. In a method step b), the at least one solvent is then removed, and a residue remains. In method step c), the residue is then heated under a reducing atmosphere. In addition, the invention relates to corresponding silicon particles, and to a corresponding anode material including silicon particles, and to a lithium cell provided with such.
US10283764B2
A positive electrode active material for a secondary battery and a secondary battery including the same are provided. The positive electrode active material for a secondary battery includes on the surface of a core, a surface treatment layer composed of a B and Si-containing amorphous oxide, and thus may exhibit reduced moisture reactivity, improved thermal and chemical stability, and high-voltage stability.
US10283757B2
The present disclosure relates to a positive electrode active material precursor for a lithium secondary battery, a positive electrode active material manufactured by using thereof, and a lithium secondary battery comprising the same. More specifically, it relates to a positive electrode active material precursor for a lithium secondary battery as a secondary particle comprising transition metals, and formed by gathering of a plurality of primary particles having different a-axis direction length to c-axis direction length ratio, wherein the a-axis direction length to c-axis direction length ratio of the primary particle making up the secondary particle is increased from the center to the surface of the secondary particle; a positive electrode active material; and a lithium secondary battery comprising the same.
US10283754B2
Battery parts, such as battery terminals, and associated systems and methods for making same. In one embodiment, a battery part has a sealing region or sealing bead located on a lateral face of an acid ring for increasing resistance to leakage therepast as the battery container shrinks. Another embodiment includes a forming assembly for use with, for example, a battery part having a bifurcated acid ring with spaced apart lips. The forming assembly can include movable forming members that can be driven together to peen, crimp, flare or otherwise form the lips on the bifurcated acid ring.
US10283752B2
A battery for an electric vehicle is disclosed. The battery may be a low voltage battery for powering low voltage systems. The battery may include a housing formed from at least two parts. For example, the housing may include a top portion that is sealed to a bottom portion. A plurality of rechargeable electrochemical cells may be disposed within the bottom portion. A printed circuit board and/or a bus bar may be disposed within the top portion. The housing can includes a desiccant and/or a two-way pressure valve extending through a surface of the housing. The valve may be used to prevent moisture ingress into an interior of the housing and/or may allow a pressure inside of the housing to equilibrate to the external air pressure.
US10283745B2
This battery pack is assembled by welding an opening portion (20) of a waterproof bag (2) to provide an insertion opening (23) that is smaller than the total opening width (W) but allows a battery core pack (1) to be inserted, inserting the battery core pack (1) into the waterproof bag (2), then, closing the opening portion (20) of the waterproof bag (2), and placing the waterproof bag (2), in which the battery core pack (1) has been placed, into an external case (3). In this way, this battery pack can be assembled efficiently, with the battery core pack having been given a waterproof structure by the waterproof bag (2) while in an ideal state.
US10283742B2
Provided is a top cover structure for power battery, including a first electrode assembly, a second electrode assembly, a top cover plate electrically connected with the first electrode assembly, and a deformable plate attached to the top cover plate; the second electrode assembly includes a second electrode terminal, a second connecting block, a second insulating piece in which a via-hole and an gas-guide hole are defined, an upper sealing piece arranged between the second insulating piece and the second connecting block and including a sealing area for deforming space and a sealing area for electrode terminal, and a lower sealing piece arranged between the second insulating piece and the top cover plate and enclosing the via-hole for deformable plate. The sealing area for deforming space encloses the via-hole and the gas-guide hole, the sealing area for electrode terminal enclose the second electrode terminal.
US10283736B2
A display apparatus includes a display panel including a display surface that displays an image and a rear surface that faces the display surface, a cover panel attached to the rear surface of the display panel, the cover panel including a center portion and an edge portion surrounding the center portion, the center portion having a thickness greater than a thickness of the edge portion, and a reinforcing member in an overlapping relationship with the edge portion of the cover panel, the reinforcing member facing the display panel such that the cover panel is between the reinforcing member and the display panel.
US10283733B2
A packaging structure for an OLED device is provided. The packaging structure includes a plurality of films coated on an outer side of the OLED device and comprising alternately stacked inorganic layers and organic layers, wherein both a film in contact with the OLED device and a film farthest from the OLED device are inorganic layers, wherein the inorganic layer in contact with the OLED device comprises at least two sub-films sequentially stacked, and wherein a contact angle between i) a material for forming a sub-film of the at least two sub-films that contacts an organic layer and ii) an organic material for forming the organic layer is smaller than a preset angle.
US10283721B2
Disclosed are an organic electroluminescent device (organic EL device) having improved luminous efficiency, sufficiently secured driving stability, and a simple construction, and a material for an organic EL device. The material for an organic EL device includes a carborane compound having a structure in which at least one carborane ring and at least one dibenzothiophene ring are present, and the at least one carborane ring is bonded to the at least one dibenzothiophene ring at position 1, 2, or 3. In addition, the organic EL device includes, between an anode and a cathode laminated on a substrate, at least one organic layer, in which the at least one organic layer includes the carborane compound.
US10283719B2
An object of the present invention is to provide a compound which, when used for organic semiconductor films in organic thin-film transistors, makes the organic thin-film transistors exhibit a high carrier mobility, a material for an organic thin-film transistor for which the compound is used, a composition for an organic thin-film transistor, an organic thin-film transistor and a method for manufacturing the same, and an organic semiconductor film.An organic thin-film transistor of the present invention contains a compound represented by General Formula (1) in an organic semiconductor film (organic semiconductor layer) thereof.
US10283706B2
A memory device includes first interconnects extending in a first direction; a second interconnect extending in a second direction crossing the first interconnects; an insulating film provided between two first interconnects; and a resistance change film between the first interconnects and the second interconnect. The resistance change film includes a first layer and second layers, the first layer extending in the second direction along the second interconnect, and the second layers being provided selectively between the respective first interconnects and the first layer. The second layers protrude toward the second interconnect exceeding an end surface of the insulating film in a third direction from the respective first interconnects toward the second interconnect. The respective second layers have a surface on a side of the first interconnects, and a width in the second direction of the surface is wider than a width in the second direction of the first interconnect.
US10283698B2
A device, which may include a semiconductor device, may include a contact plug, a first barrier metal covering a bottom surface of the contact plug and a lower sidewall of the contact plug, such that the first barrier metal exposes an upper sidewall of the contact plug, and an insulation pattern covering the upper sidewall of the contact plug such that the insulation pattern isolates the first barrier metal from exposure. A magnetic tunnel junction pattern may cover a top surface of the contact plug. Each element of the contact plug, the first barrier metal, and the insulation pattern may be in a contact hole of a first interlayer dielectric layer.
US10283694B2
A method for increasing the integration level of superconducting electronic circuits, comprising fabricating a series of planarized electrically conductive layers patterned into wiring, separated by planarized insulating layers, with vias communicating between the conductive layers. Contrary to the standard sequence of patterning from the bottom up, the pattern of vias in at least one insulating layer is formed prior to the pattern of wiring in the underlying conductive layer. This enables a reduction in the number of planarization steps, leading to a fabrication process which is faster and more reliable. In a preferred embodiment, the superconductor is niobium and the insulator is silicon dioxide. This method can provide 10 or more wiring layers in a complex integrated circuit, and is compatible with non-planarized circuits placed above the planarized wiring layers.
US10283693B2
Structures and techniques, using superconducting Josephson-junction based circuits, to directly engineer physical multiqubit (or “many-qubit”) interactions in a non-perturbative manner. In one embodiment, a system for multiqubit interaction includes: a multispin coupler including a plurality of loops, each loop having a pair of Josephson junctions; and a plurality of qubits each inductively coupled to the multispin coupler.
US10283681B2
A phosphor-converted light emitting device includes a light emitting diode (LED) on a substrate, where the LED comprises a stack of epitaxial layers comprising a p-n junction. A wavelength conversion material is in optical communication with the LED. According to one embodiment of the phosphor-converted light emitting device, a selective filter is adjacent to the wavelength conversion material, and the selective filter comprises a plurality of nanoparticles for absorbing light from the LED not down-converted by the wavelength conversion material. According to another embodiment of the phosphor-converted light emitting device, a perpendicular distance between a perimeter of the LED on the substrate and an edge of the substrate is at least about 24 microns. According to another embodiment of the phosphor-converted light emitting device, the LED comprises a mirror layer on one or more sidewalls thereof for reducing light leakage through the sidewalls.
US10283678B2
A light-emitting-device package according to one aspect of the present invention includes: a metal substrate; a light emitting device disposed on a first surface of the metal substrate and configured to emit at least ultraviolet light; a pair of electrodes disposed to be spaced apart from each other on at least the first surface of the metal substrate, and electrically connected to the light emitting device; and an insulating layer provided between the metal substrate and the pair of electrodes. UV reflectance of the first surface of the metal body is higher than UV reflectance of the pair of electrodes.
US10283662B2
A solar assembly or module comprising a plurality of solar cells and a support, the support comprising a conductive layer or back plane on each planar side. Each one of the plurality of solar cells is placed on the first conductive portion with the first contact electrically connected to the first conductive portion so that the solar cells are connected in parallel through the first conductive portion. A second contact of each solar cell can be connected to the second conductive portion so that the first and second conductive portions form terminals of opposite conductivity type. The modules can be interconnected to form a string or an electrical series connection of discrete modules by overlapping and bonding the first terminal of a first module with the second terminal of a second module.
US10283659B2
Embodiments of the disclosure are generally related to solar panel configurations. In some embodiments, the active surface area of the solar panel is increased compared to traditional flat solar cell arrays. The increase in active surface area may increase solar panel efficiency. For example, in some embodiments, a single light ray may have portions reflected onto a plurality of solar cell surfaces to provide further opportunities for light capture and conversion to electricity.
US10283658B2
Photovoltaic (PV) and photodetector (PD) devices, comprising a plurality of interband cascade (IC) stages, wherein the IC stages comprise an absorption region with a type-I superlattice and/or a bulk semiconductor material having a band gap, the absorption region configured to absorb photons, an intraband transport region configured to act as a hole barrier, and an interband tunneling region configured to act as an electron barrier, wherein the absorption region, the intraband transport region, and the interband tunneling region are positioned such that electrons will flow from the absorption region to the intraband transport region to the interband tunneling region.
US10283656B2
A photoelectric conversion device includes a quantum dot layer formed by integrating a plurality of quantum dots on a main surface of a semiconductor substrate. The quantum dot layer contains not less than two types of organic molecules having different carbon numbers, among the quantum dots. The quantum dots are bonded to one another by lower-carbon-number organic molecules having a lower carbon number to form aggregates of the quantum dots. Higher-carbon-number organic molecules having a higher carbon number are bonded to the outer sides of the aggregates.
US10283650B2
Certain aspects of the present disclosure generally relate to a semiconductor variable capacitor offering at least two types of capacitance tuning, as well as techniques for fabricating the same. For example, a CMOS-compatible silicon on insulator (SOI) process with a buried oxide (BOX) layer may provide a transcap with a front gate (above the BOX layer) and a back gate (beneath the BOX layer). The front gate may offer lower voltage, coarse capacitance tuning, whereas the back gate may offer higher voltage, fine capacitance tuning. By offering both types of capacitance tuning, such transcaps may provide greater capacitance resolution. Several variations of transcaps with front gate and back gate tuning are illustrated and described herein.
US10283642B1
Manufacturing techniques and related semiconductor devices are disclosed in which the channel region of analog transistors and/or transistors operated at higher supply voltages may be formed on the basis of a very thin semiconductor layer in an SOI configuration by incorporating a counter-doped region into the channel region at the source side of the transistor. The counter-doped region may be inserted prior to forming the gate electrode structure. With this asymmetric dopant profile in the channel region, superior transistor performance may be obtained, thereby obtaining a performance gain for transistors formed on the basis of a thin semiconductor base material required for the formation of sophisticated fully depleted transistor elements.
US10283640B2
The present description relates to the field of fabricating microelectronic devices having non-planar transistors. Embodiments of the present description relate to the formation of source/drain contacts within non-planar transistors, wherein a titanium-containing contact interface may be used in the formation of the source/drain contact with a discreet titanium silicide formed between the titanium-containing interface and a silicon-containing source/drain structure.
US10283639B2
A semiconductor structure includes a substrate, a first fin structure disposed over the substrate, a second fin structure disposed over the substrate, and an isolation structure disposed between the first fin structure and the second fin structure and electrically isolating the first fin structure from the second fin structure. The isolation structure includes a first thickness, a second thickness and a third thickness different from each other.
US10283635B2
The field effect transistor device comprises a substrate (1) of semiconductor material, a body well of a first type of electric conductivity in the substrate, a source region in the body well, the source region having an opposite second type of electric conductivity, a source contact (3) on the source region, a body contact region of the first type of electric conductivity in the body well, a body contact (5) on the body contact region, and a gate electrode layer (2) partially overlapping the body well. A portion (2*) of the gate electrode layer (2) is present between the source contact (3) and the body contact (5).
US10283625B2
Transistors include stress liners, with one or more semiconductor structures between the stress liners. The stress liners provide a stress on the one or more semiconductor structures. A gate is formed over and around the one or more semiconductor structures. A source and drain region is formed on the one or more semiconductor structures on opposite sides of the gate, between the stress liners.
US10283624B1
A semiconductor device and a method for forming the same are provided. The method includes forming a gate structure over a fin structure. The method further includes forming first gate spacers on opposite sidewalls of the gate structure. The method further includes forming source/drain features in the fin structure and adjacent to the first gate spacers. The method further includes performing a surface treatment process on top surfaces of the source/drain features and outer sidewalls of the first gate spacers. The method further includes depositing a contact etch stop layer (CESL) over the source/drain features and the first gate spacers. A first portion of the CESL is deposited over the top surfaces of the source/drain features at a first deposition rate. A second portion of the CESL is deposited over the outer sidewalls of the first gate spacers at a second deposition rate.
US10283618B1
A manufacturing method of a semiconductor device includes the following steps. A first stacked structure and a second stacked structure are formed on a core region and an input/output (I/O) region of a semiconductor substrate respectively. The first stacked structure includes a first patterned oxide layer, a first patterned nitride layer, and a first dummy gate. The second stacked structure includes a second patterned oxide layer, a second patterned nitride layer, and a second dummy gate. The first dummy gate and the second dummy gate are removed for forming a first recess above the core region and a second recess above the I/O region. A first gate structure is formed in the first recess and a second gate structure is formed in the second recess. The first patterned nitride layer is removed before the step of forming the first gate structure in the first recess.
US10283616B2
A fabricating method of a semiconductor structure includes the following steps. A gate material layer is formed on a semiconductor substrate. A patterned mask layer is formed on the gate material layer. The pattern mask layer includes at least one opening exposing a part of the gate material layer. An impurity treatment is performed to the gate material layer partially covered by the pattern mask layer for forming at least one doped region in the gate material layer. An etching process is performed to remove the gate material layer including the doped region. A dummy gate may be formed by patterning the gate material layer, and the impurity treatment may be performed after the step of forming the dummy gate. The performance of the etching processes for removing the gate material layer and/or the dummy gate may be enhanced, and the gate material residue issue may be solved accordingly.
US10283603B2
In some embodiments, a semiconductor device is provided. The semiconductor device includes a first semiconductor fin that extends from a substrate. The first semiconductor fin has source and drain regions, which are separated from one another by a channel region in the first semiconductor fin. A gate overlies an upper surface and sidewalls of the channel region. A contact is coupled to the source or drain region of the first semiconductor fin, where the source or drain region includes a layer of epitaxial material with a substantially diamond-shaped cross-section. The contact surrounds the source or drain region on top and bottom surfaces of the substantially diamond-shaped cross-section. A first capping material is arranged along outer sidewalls of the first semiconductor fin under the contact. The first capping material has an uppermost surface that is spaced below a lowermost surface of the contact by a non-zero distance.
US10283599B2
A transistor includes a first layer over a substrate. The transistor also includes a second layer over the first layer. The transistor further includes a carrier channel layer at an interface of the first layer and the second layer. The transistor additionally includes a gate structure, a drain, and a source over the second layer. The transistor also includes a passivation material in the second layer between an edge of the gate structure and an edge of the drain in a top-side view. The carrier channel layer has a smaller surface area than the first layer between the edge of the gate structure and the edge of the drain in the top-side view.
US10283596B2
A silicon carbide single crystal substrate includes a first main surface and an orientation flat. The orientation flat extends in a <11-20> direction. The first main surface includes an end region extending by at most 5 mm from an outer periphery of the first main surface. In a direction perpendicular to the first main surface, an amount of warpage of the end region continuous to the orientation flat is not greater than 3 μm.
US10283595B2
A silicon carbide semiconductor substrate according to an aspect of the present disclosure has a first principal surface and a second principal surface opposite to the first principal surface. The silicon carbide semiconductor substrate includes a silicon carbide semiconductor crystal, and a first affected layer having crystal disturbances and disposed under the first principal surface. A thickness of the first affected layer in a first region including a center of the first principal surface is smaller than a thickness of the first affected layer in a second region surrounding the first region in a plane view.
US10283589B2
A nanowire device having a plurality of internal spacers and a method for forming said internal spacers are disclosed. In an embodiment, a semiconductor device comprises a nanowire stack disposed above a substrate, the nanowire stack having a plurality of vertically-stacked nanowires, a gate structure wrapped around each of the plurality of nanowires, defining a channel region of the device, the gate structure having gate sidewalls, a pair of source/drain regions on opposite sides of the channel region; and an internal spacer on a portion of the gate sidewall between two adjacent nanowires, internal to the nanowire stack. In an embodiment, the internal spacers are formed by depositing spacer material in dimples etched adjacent to the channel region. In an embodiment, the dimples are etched through the channel region. In another embodiment, the dimples are etched through the source/drain region.
US10283580B2
A display device including a substrate, a drive signal line, a first sub-pixel unit, and a second sub-pixel unit is provided. The first sub-pixel unit includes a first light-emitting unit, a first drive transistor, and a first reset transistor, wherein the first reset transistor has a first channel region and is electrically connected to the first light-emitting unit and the first drive transistor. The second sub-pixel unit includes a second light-emitting unit, a second drive transistor, and a second reset transistor, wherein the second reset transistor has a second channel region and is electrically connected to the second light-emitting unit and the second drive transistor, and the width of the first channel region is different from the width of the second channel region.
US10283570B2
A display device includes a substrate having a red pixel region, a blue pixel region, and a green pixel region. An anode is on the substrate, a light-emitting layer is on the anode, and a cathode is on the light-emitting layer, wherein the light-emitting layer includes a red light-emitting layer emitting red light on the red pixel region, a blue light-emitting layer emitting blue light on the blue pixel region, and a green light-emitting layer emitting green light on the red pixel region, the blue pixel region, and the green pixel region. Each of the red light, the blue light, and the green light is resonated between the anode and the cathode.
US10283558B1
An image sensor including a photodiode, a floating diffusion region, a first, second, and third doped region of a semiconductor material, and a first capacitor is presented. The photodiode is disposed in the semiconductor material to generate image charge in response to incident light. The floating diffusion region is disposed in the semiconductor material proximate to the photodiode. The floating diffusion region is at least partially surrounded by the first doped region of the semiconductor material. The second doped region and the third doped region of the semiconductor material each have an opposite polarity of the floating diffusion region and the first doped region. The floating diffusion region and at least part of the first doped region are laterally disposed between the second doped region and the third doped region.
US10283557B2
Various approaches are discussed for using four-side buttable CMOS tiles to fabricate detector panels, including large-area detector panels. Fabrication may utilize pads and interconnect structures formed on the top or bottom of the CMOS tiles. Electrical connection and readout may utilize readout and digitization circuitry provided on the CMOS tiles themselves such that readout of groups or sub-arrays of pixels occurs at the tile level, while tiles are then readout at the detector level such that readout operations are tiered or multi-level.
US10283549B2
Some embodiments of the present disclosure relate to a method of forming an integrated chip. The method includes forming a first interconnect wire within a first inter-level dielectric (ILD) layer over a substrate. One or more vias are formed on the first interconnect wire and within a second ILD layer separated from the substrate by the first ILD layer. One or more additional vias are formed within the second ILD layer. Respective ones of the one or more vias have a larger size than respective ones of the one or more additional vias. A thickness of the substrate is reduced, and the substrate is etched to form a bond pad opening extending through the substrate to the first interconnect wire. A bond pad is formed within the bond pad opening and directly over the one or more vias.
US10283526B2
Standard cell circuits employing voltage rails electrically coupled to metal shunts for reducing or avoiding increases in voltage drop are disclosed. In one aspect, a standard cell circuit is provided that employs active devices that include corresponding gates disposed with a gate pitch. First and second voltage rails having a line width are disposed in a first metal layer. Employing the first and second voltage rails having substantially a same line width reduces the height of the standard cell circuit as compared to conventional standard cell circuits. Metal lines are disposed in a second metal layer with a metal pitch less than the gate pitch such that the number of metal lines exceeds the number of gates. Electrically coupling the first and second voltage rails to the metal shunts increases the conductive area of each voltage rail, which reduces a voltage drop across each voltage rail.
US10283516B1
Semiconductor device, memory arrays, and methods of forming a memory cell include or utilize one or more memory cells. The memory cell(s) include a first nanosheet transistor located on top of a substrate and connected to a first terminal, a second nanosheet transistor located on top of the first nanosheet transistor and connected in parallel to the first nanosheet transistor and connected to a second terminal, where the first and second nanosheet transistors share a common floating gate and a common output terminal, and an access transistor connected in series to the common output terminal and a low voltage terminal, the access transistor configured to trigger hot-carrier injection to the common floating gate to change a voltage of the common floating gate.
US10283503B2
Provided is a metal gate structure and related methods that include performing a metal gate cut process. The metal gate cut process includes a plurality of etching steps. For example, a first anisotropic dry etch is performed, a second isotropic dry etch is performed, and a third wet etch is performed. In some embodiments, the second isotropic etch removes a residual portion of a metal gate layer including a metal containing layer. In some embodiments, the third etch removes a residual portion of a dielectric layer.
US10283500B2
A monolithic integrated circuit includes first and second pluralities of parallel-connected transistor elements (e.g., transistor fingers). To spread heat in the IC, the first and second pluralities of transistor elements are interleaved with each other and arranged in a first row. The IC also may include third and fourth pluralities of parallel-connected transistor elements arranged in a second row. The transistor elements in the first row may be series and shunt transistors of an RF switch transmit path, and the transistor elements in the second row may be series and shunt transistors of an RF switch receive path. During a transmit mode of operation, the series transistors in the transmit path and the shunt transistors in the receive path are closed. During a receive mode of operation, the shunt transistors in the transmit path and the series transistors in the receive path are closed.
US10283496B2
Provided is a method for inserting a pre-designed filler cell, as a replacement to a standard filler cell, including identifying at least one gap among a plurality of functional cells. In some embodiments, a pre-designed filler cell is inserted within the at least one gap. By way of example, the pre-designed filler cell includes a layout design having a pattern associated with a particular failure mode. In various embodiments, a layer is patterned on a semiconductor substrate such that the pattern of the layout design is transferred to the layer on the semiconductor substrate. Thereafter, the patterned layer is inspected using an electron beam (e-beam) inspection process.
US10283495B2
A semiconductor device includes two elongated active regions that include source/drain regions for multiple transistor devices, a first contact layer that includes an electrical connection between the two active regions, a second contact layer that includes a connection between two gate lines, and a gate contact layer that provides connections to the gate lines.
US10283492B2
Laminated interposers and packages, with embedded trace interconnects are provided. An example process for making an interposer or package achieves vertical conductive vias in the package by depositing conductive traces on multiple wafers or panes, then laminating these substrates into a stack, thereby embedding the conductive traces. The laminated stack is sliced to dimensions of an interposer or electronic package. A side of the sliced stack is then used as the top of the interposer or package, rendering some of the horizontally laid traces into vertical conductive vias. The interposer or package can be finished or developed by adding redistribution layers on the top and bottom surfaces, and active and passive components. Electronic components can also be embedded in the laminated stack. Some of the stack layers can be active dies, such as memory controllers, memory storage arrays, and processors, to form a memory subsystem or self-contained computing device.
US10283488B2
A semiconductor module includes: a substrate having an insulating layer and a connecting portion connecting front and rear surfaces of the insulating layer; a first pattern on a front surface of the substrate; a second pattern on a rear surface of the substrate; a first semiconductor device disposed adjacent to the front surface of the substrate and including a first switching device having a lateral structure; a second semiconductor device disposed adjacent to the rear surface of the substrate and including a second switching device having the lateral structure; and a capacitor. A path formed by the first pattern and the first semiconductor device and a path formed by the second pattern and the second semiconductor device are opposed to each other across the substrate, and in the paths, currents flow in directions opposite to each other.
US10283487B2
Embodiments of the present disclosure relate to an integrated circuit (IC) package, including a molding compound positioned on a first die and laterally adjacent to a stack of dies positioned on the first die. The stack of dies electrically couples the first die to an uppermost die, and a thermally conductive pillar extends through the molding compound from the first die to an upper surface of the molding compound. The thermally conductive pillar is electrically isolated from the stack of dies and the uppermost die. The thermally conductive pillar laterally abuts and contacts the molding compound.
US10283485B2
A semiconductor device is disclosed including semiconductor die stacked in a stepped, offset configuration, where die bond pads of semiconductor die on different levels are interconnected using one or more conductive bumps.
US10283483B2
A packaging method and package structure for an image sensing chip are provided. The method includes: providing a wafer including a first surface and a second surface opposite to the first surface, where the wafer has multiple image sensing chips arranged in a grid, each having an image sensing region and contact pads arranged on a side of the first surface of the wafer; forming openings extending towards the first surface on the second surface of the wafer, to expose the contact pads; forming V-shaped cutting trenches extending towards the first surface on the second surface of the wafer; and applying a photosensitive ink on the second surface of the wafer, to completely fill the V-shaped cutting trenches, cover the openings, and form a hollow cavity between each of the openings and the photosensitive ink.
US10283478B2
To provide a pressure contact type semiconductor device stack which can uniformly pressurize pressure contact type semiconductor devices irrespective of presence or absence of a notch portion of the pressure contact type semiconductor device, and can prevent thermal destruction of the relevant pressure contact type semiconductor device.A pressurizing device for pressurizing between pressure contact type semiconductor devices and heat sinks which have been stacked is provided with pressuring bodies arranged at the upper and lower surfaces, metal fittings for insulating plate each for distributing a pressure applied by the pressuring body to an outer circumferential surface, and insulating plates each for pressuring the relevant heat sinks by the pressure applied to a pressurizing surface of the relevant metal fitting for insulating plate, the pressure contact type semiconductor device has a notch portion at a part of a peripheral portion of a post surface of any one of a collector post surface or an emitter post surface, and a device for making a distance from a pressurizing surface of the metal fitting for insulating plate pressurized by the upper surface pressurizing body to a front surface of a chip equal to a distance from a pressurizing surface of the metal fitting for insulating plate pressurized by the lower surface pressurizing body to a back surface of a chip is provided.
US10283476B2
A curable resin or adhesive composition includes at least one monomer, a photoinitiator capable of initiating polymerization of the monomer when exposed to light, and at least one energy converting material, preferably a phosphor, capable of producing light when exposed to radiation (typically X-rays). The material is particularly suitable for bonding components at ambient temperature in situations where the bond joint is not accessible to an external light source. An associated method includes: placing a polymerizable adhesive composition, including a photoinitiator and energy converting material, such as a down-converting phosphor, in contact with at least two components to be bonded to form an assembly; and, irradiating the assembly with radiation at a first wavelength, capable of conversion (down-conversion by the phosphor) to a second wavelength capable of activating the photoinitiator, to prepare items such as inkjet cartridges, wafer-to-wafer assemblies, semiconductors, integrated circuits, and the like.
US10283464B2
An electronic device includes a semiconductor device including a semiconductor chip, a first grounded layer formed on a surface of the semiconductor chip, a mold resin arranged on a side of the semiconductor device, an insulating layer arranged over the semiconductor device and the mold resin, a second grounded layer formed between the semiconductor device and the insulating layer, and the resin mold and the insulating layer, a second wiring layer formed over the insulating layer and includes a first area disposed at a part overlapping with the second grounded layer and a second area disposed on a side of an end part of the second grounded layer, a via that couples the first wiring layer and the second area of the second wiring layer, and a grounded conductor formed inside the insulating layer at a position overlapping with the second area of the second wiring layer.
US10283457B2
The present disclosure relates a method of forming substrate identification marks. In some embodiments, the method may be performed by forming a photosensitive material over a substrate. A first type of electromagnetic radiation is selectively provided to the photosensitive material to expose a plurality of substrate identification marks within the photosensitive material, and a second type of electromagnetic radiation is selectively provided to the photosensitive material to expose one or more alignment marks within the photosensitive material. Exposed portions of the photosensitive material are removed to form a patterned photosensitive material. The substrate is etched according to the patterned photosensitive material to form recesses within the substrate that are defined by the plurality of substrate identification marks and the one or more alignment marks.
US10283455B2
A manufacturing method of a package structure having an embedded bonding film comprises the following steps: forming a bonding film, forming a redistribution substrate and forming a core on a bottom side of the redistribution substrate opposite to the top side. The bonding film comprises the following steps: forming a plurality of dielectric layers and metal circuit layers sequentially and alternatively in a plurality of bonding areas; exposing a plurality of top metal pads of a topmost metal circuit layer among the metal circuit layers in the plurality of bonding areas; and etching to form a bonding film. The bonding film has a left longitudinal branch and a lower latitudinal branch. A lower end of the left longitudinal branch is connected to a left end of the lower latitudinal branch. The left longitudinal branch and the lower latitudinal branch form an L shape.
US10283453B2
Embodiments of the present disclosure are directed toward interconnect routing configurations and associated techniques. In one embodiment, an apparatus includes a substrate, a first routing layer disposed on the substrate and having a first plurality of traces, and a second routing layer disposed directly adjacent to the first routing layer and having a second plurality of traces, wherein a first trace of the first plurality of traces has a width that is greater than a width of a second trace of the second plurality of traces. Other embodiments may be described and/or claimed.
US10283450B2
A method, for forming a semiconductor device structure, includes: forming a conductive structure over a substrate, wherein the conductive structure includes twin boundaries. The forming the conductive structure includes: manipulating process conditions so as to promote formation of the twin boundaries and yet control a density of the twin boundaries to be outside a range for which a portion of a curve is an asymptote of a constant value, the curve representing values of an atomic migration ratio corresponding to values of the density of the twin boundaries.
US10283448B2
A method of fabricating a semiconductor device includes providing a first substrate comprising a first conductive element exposed at a surface of the first substrate; forming a patterned photoresist layer atop the first conductive element, whereby the patterned photoresist layer provides openings exposing the first conductive element; forming a first metal layer in the openings and directly atop the first conductive element; forming a first insulator layer over the first metal layer and the first substrate; and polishing the first metal layer and the first insulator layer, resulting in a first interface surface over the first substrate wherein the first interface surface includes part of the first metal layer and the first insulator layer.
US10283447B1
A power semiconductor module includes one or more power semiconductor dies attached to a first main face of a substrate, a plastic housing attached to the substrate, which together with the substrate encloses the one or more power semiconductor dies, a plurality of power terminals attached to the first main face of the substrate at a first end, and extending through the plastic housing at a second end to provide a point of external electrical connection for the one or more power semiconductor dies, a potting compound embedding the one or more power semiconductor dies, the first main face of the substrate and at least part of the first end of the plurality of power terminals, and an insulative coating applied only to parts of the plurality of power terminals disposed inside the plastic housing and in contact with just air. A corresponding method of manufacture also is provided.
US10283441B2
In an embodiment, a method of integrating capacitors in semiconductor devices includes: providing a lead-frame for a semiconductor device, the lead-frame including one or more electrically conductive areas, forming a dielectric layer over the electrically conductive area or areas, forming an electrically conductive layer over the dielectric layer thus forming one or more capacitors including the dielectric layer sandwiched between an electrically conductive area and the electrically conductive layer, and arranging a semiconductor die onto the lead-frame by providing electrical contact between the semiconductor die and the electrically conductive layer.
US10283436B2
A power electronics module comprises a first liquid cooler comprising a cooling channel for receiving a cooling liquid, wherein the first liquid cooler comprises a metal body providing a first terminal of the power electronics module; a second liquid cooler comprising a cooling channel for receiving a cooling liquid, wherein the second liquid cooler comprises a metal body providing a second terminal of the power electronics module; a plurality of semiconductor chips arranged between the first liquid cooler and the second liquid cooler, such that a first electrode of each semiconductor chip is bonded to the first liquid cooler, such that the first electrode is in electrical contact with the first liquid cooler, and an opposite second electrode of each semiconductor chip is in electrical contact with the second liquid cooler; and an insulating encapsulation, formed by molding the first liquid cooler, the second liquid cooler and the plurality of semiconductor chips into an insulation material, such that the first liquid cooler, the second liquid cooler and the plurality of semiconductor chips are at least partially embedded onto the insulation material.
US10283434B2
An electronic device includes: a first circuit board; a second circuit board located above a first region of the first circuit board; a first semiconductor element located above a second region of the first circuit board, which is different from the first region, and above a third region of the second circuit board; a first connection interposed between the first semiconductor element and the second region so as to electrically interconnect the first semiconductor element and the first circuit board; and a second connection interposed between the first semiconductor element and the third region so as to electrically interconnect the first semiconductor element and the second circuit board.
US10283431B2
The present invention is a bonded body in which an aluminum member constituted by an aluminum alloy, and a metal member constituted by copper, nickel, or silver are bonded to each other. The aluminum member is constituted by an aluminum alloy in which a Si concentration is set to be in a range of 1 mass % to 25 mass %. A Ti layer is formed at a bonding portion between the aluminum member and the metal member, and the aluminum member and the Ti layer, and the Ti layer and the metal member are respectively subjected to solid-phase diffusion bonding.
US10283427B2
Apparatus, and methods of manufacture thereof, in which a molding compound is formed between spaced apart microelectronic devices. The molding compound comprises micro-filler elements. No boundary of any of the micro-filler elements is substantially parallel to a substantially planar surface of the molding compound, or to a substantially planar surface of any of the microelectronic devices.
US10283423B2
Embodiments are directed to a method Embodiments are directed to a test structure of a fin-type field effect transistor (FinFET). The test structure includes a first conducting layer electrically coupled to a dummy gate of the FinFET, and a second conducting layer electrically coupled to a substrate of the FinFET. The test structure further includes a third conducting layer electrically coupled to the dummy gate of the FinFET, and a first region of the FinFET at least partially bound by the first conducting layer and the second conducting layer. The test structure further includes a second region of the FinFET at least partially bound by the second conducting layer and the third conducting layer, wherein the first region comprises a first dielectric having a first dimension, and wherein the second region comprises a second dielectric having a second dimension greater than the first dimension.
US10283422B2
An ion implantation method includes measuring a beam energy of an ion beam that is generated by a high-energy multistage linear acceleration unit operating in accordance with a tentative high-frequency parameter, adjusting a value of the high-frequency parameter based on the measured beam energy, and performing ion implantation by using the ion beam generated by the high-energy multistage linear acceleration unit operating in accordance with the adjusted high-frequency parameter. The tentative high-frequency parameter provides a value different from a value of the high-frequency parameter for achieving a maximum acceleration in design to a high-frequency resonator in a part of stages including at least a most downstream stage. The adjusting includes changing at least one of a voltage amplitude and a phase set for the high-frequency resonator in the part including the at least most downstream stage.
US10283418B2
A method for forming fin field effect transistors for complementary metal oxide semiconductor (CMOS) devices includes filling, with a dielectric fill, areas between fin structures formed on a substrate, the fin structures including a silicon layer formed on a SiGe layer; removing the SiGe layer of a first region of the fin structures by selectively etching the fin structures from the end portions of the fin structures to form voids; exposing the silicon layer of the fin structures in the first region and a second regions; and thermally oxidizing the SiGe layer in the second region, forming SiGe fins on a second dielectric material in the second region and silicon fins on the first dielectric material in the first region.
US10283414B2
A method of forming a semiconductor device includes providing a semiconductor structure that includes a first semiconductor material extending from a first region to a second region. The method further includes removing a portion of the first semiconductor material in the second region to form a recess, where the recess exposes a sidewall of the first semiconductor material disposed in the first region; forming a dielectric material covering the sidewall; while the dielectric material covers the sidewall, epitaxially growing a second semiconductor material in the second region adjacent the dielectric material; and forming a first fin including the first semiconductor material and a second fin including the second semiconductor material.
US10283411B1
A first vertical transistor device associated with a first conductivity type is formed within a first tier. A second vertical transistor device associated with a second conductivity type is formed within a second tier. The first vertical transistor device is connected to the second vertical transistor device to create a stacked vertical transistor device for three-dimensional monolithic integration such that the first vertical transistor device is located below the second vertical transistor device within the stacked vertical transistor device. Connecting the first vertical transistor device to the second vertical transistor device includes forming interconnects from a top of the second tier to respective positions within the first tier by forming vias and filling the vias with interconnect material.
US10283406B2
A method of forming an active device having self-aligned source/drain contacts and gate contacts, including, forming an active area on a substrate, where the active area includes a device channel; forming two or more gate structures on the device channel; forming a plurality of source/drains on the active area adjacent to the two or more gate structures and device channel; forming a protective layer on the surfaces of the two or more gate structures, plurality of source/drains, and active layer; forming an interlayer dielectric layer on the protective layer; removing a portion of the interlayer dielectric and protective layer to form openings, where each opening exposes a portion of one of the plurality of source/drains; forming a source/drain contact liner in at least one of the plurality of openings; and forming a source/drain contact fill on the source/drain contact liner.
US10283404B2
Provided are methods of forming diffusion barriers and adhesion layers for interconnects such as cobalt (Co) interconnects or ruthenium (Ru) interconnects. The methods involve selective deposition of tungsten carbon nitride (WCN) films on the oxide surfaces of a feature including a Co surface. The selective growth of WCN on oxide allows the contact resistance at an interface such as a Co—Co interface or a Co—Ru interface to be significantly reduced while maintaining good film coverage, adhesion, and/or barrier properties on the sidewall oxide surfaces.
US10283388B1
A detaping machine is adapted for removing a tape from a frame, the tape includes a wafer mounting area and a periphery area surrounding the wafer mounting area. The detaping machine includes a carrier and a detaping module. The carrier is for supporting the tape and the frame. The detaping module includes an elastic pressing device and a detaping head, wherein the periphery area of the tape is adapted to be pressed by the elastic pressing device, and the wafer mounting area of the tape is adapted to be pressed by the detaping head. A detaping method is further provided.
US10283386B2
A processing room includes a processing chamber, a discharge chamber, a sealing member, a blocking member, and a reclaiming member. The discharge chamber includes a main body communicating with the processing chamber, and a receiving portion and a discharge portion communicating with the main body. The receiving portion is aligned to the discharge portion. The sealing member includes a sealing portion and a sealing valve mounted on the sealing portion. The sealing portion is partially and moveably received in the receiving portion and resists against a sidewall of the receiving portion. The blocking member is detachably mounted on an end of the discharge portion and seals the discharge portion. The reclaiming member is partially received in the main body.
US10283379B2
Apparatus and methods for heating and cooling a plurality of substrate wafers are provided. LED lamps are positioned against the back sides of a plurality of cold plates. In some embodiments, wafers are supported on a wafer lift which can move all wafers together. In some embodiments, wafers are supported on independent lift pins which can move individual wafers for heating and cooling. Some embodiments of the disclosure provide for decreased time between wafer switching in a processing chamber.
US10283375B2
A semiconductor device and method for forming the semiconductor device is provided. The semiconductor device includes an integrated circuit having through vias adjacent to the integrated circuit die, wherein a molding compound is interposed between the integrated circuit die and the through vias. The through vias have a projection extending through a patterned layer, and the through vias may be offset from a surface of the patterned layer. The recess may be formed by selectively removing a seed layer used to form the through vias.
US10283374B2
Structures and methods are provided for nanosecond electrical pulse anneal processes. The method of forming an electrostatic discharge (ESD) N+/P+ structure includes forming an N+ diffusion on a substrate and a P+ diffusion on the substrate. The P+ diffusion is in electrical contact with the N+ diffusion. The method further includes forming a device between the N+ diffusion and the P+ diffusion. A method of annealing a structure or material includes applying an electrical pulse across an electrostatic discharge (ESD) N+/P+ structure for a plurality of nanoseconds.
US10283367B2
Provided is a hydrogenation annealing method using a microwave, which performs hydrogenation annealing at a low temperature and with low power in a manufacturing process of a thin film transistor (TFT) for a display device. The hydrogenation annealing method is constituted by a loading step of loading a device requiring hydrogenation annealing into a chamber and an annealing step of irradiating a microwave having a frequency in an industrial scientific medical (ISM) band into the chamber into which the device is loaded. As hydrogenation annealing is performed at a low temperature by using the microwave for an oxide semiconductor TFT or LTPS having very large electron mobility, high integrated energy is transmitted to the device by the microwave, thereby implementing recoupling of hydrogen atoms which have been performed only at a high temperature, even at a low temperature.
US10283357B2
Chalcogenidometallates of group IIB, IV and V elements and, particularly, alkali metal-containing chalcogenidometallates of cadmium, lead and bismuth are provided. Also provided are methods of using the chalcogenidometallates as molecular solders to form metal chalcogenide structures, including thin films, molded objects and bonded surfaces composed of metal chalcogenides.
US10283347B2
A display device including a first film, a flexible printed circuit, and a second film. The first film includes a substrate and a non-adhesive pattern, where the substrate includes a first area and a second area adjacent to the first area, and the non-adhesive pattern is formed on at least a portion of the second area. The flexible printed circuit is disposed on the first area of the first film. The second film is disposed on the flexible printed circuit and the first film.
US10283346B2
A method for recycling a sapphire substrate is disclosed. The method includes the steps of: high-temperature baking, wherein an intact epitaxial wafer to be scrapped is placed and baked in a baking oven at a high temperature of from 600° C. to 1000° C., and wherein the epitaxial wafer contains the sapphire substrate; and high-temperature rinsing in a concentrated acid, wherein the baked epitaxial wafer is then rinsed in the concentrated acid having a concentration ranging from 60% to 99% at a high temperature of from 160° C. to 300° C. The method can be used for recycling both patterned and smooth sapphire substrates.
US10283341B2
Mass spectrometry systems or assemblies therefore include an ionizer that includes at least one planar conductor, a mass analyzer with a planar electrode assembly, and a detector comprising at least one planar conductor. The ionizer, the mass analyzer and the detector are attached together in a compact stack assembly. The stack assembly has a perimeter that bounds an area that is between about 0.01 mm2 to about 25 cm2 and the stack assembly has a thickness that is between about 0.1 mm to about 25 mm.
US10283332B2
A Cu—Ga binary alloy sputtering target having excellent mechanical workability, high density, and high bending strength, and a method of producing the sputtering target are provided. The sputtering target has a composition including 28 to 35 atomic % of Ga and the balance made of Cu and inevitable impurities. In addition, the sputtering target has a coexistence microstructure in which a low-Ga-containing Cu—Ga binary alloy phase is surrounded by a high-Ga-containing Cu—Ga binary alloy phase. The low-Ga-containing Cu—Ga binary alloy phase includes 26 atomic % or less of Ga and a balance made of Cu. The high-Ga-containing Cu—Ga binary alloy phase includes 28 atomic % or more of Ga.
US10283331B2
Apparatus for providing a magnetic field within a process chamber are provided herein. In some embodiments, an apparatus for providing a magnetic field within a process chamber includes: an inner rotating mechanism including a first plate having a central axis, wherein the first plate includes and a first plurality of magnets and is rotatable about the central axis; and an outer lifting mechanism including a ring disposed proximate the first plate, the ring having a second plurality of magnets coupled to a bottom surface of the ring proximate the peripheral edge of the ring, wherein the ring is movable in a direction perpendicular to the first plate.
US10283330B2
Systems and methods for achieving a pre-determined factor associated with the edge region within the plasma chamber is described. One of the methods includes providing an RF signal to a main electrode within the plasma chamber. The RF signal is generated based on a frequency of operation of a first RF generator. The method further includes providing another RF signal to an edge electrode within the plasma chamber. The other RF signal is generated based on the frequency of operation of the first RF generator. The method includes receiving a first measurement of a variable, receiving a second measurement of the variable, and modifying a phase of the other RF signal based on the first measurement and the second measurement. The method includes changing a magnitude of a variable associated with a second RF generator to achieve the pre-determined factor.
US10283326B2
An ion generator includes an ion source control unit that controls a gas supply unit and a plasma excitation source in accordance with a current ion source condition and a new ion source condition to be employed subsequent to the current ion source condition, a retention time obtaining unit that obtains retention time for the current ion source condition, and a pre-treatment condition setting unit that sets a pre-treatment condition defining a pre-treatment for forming a surface layer region suitable for the new ion source condition on a plasma chamber inner wall based on the current ion source condition, the retention time, and the new ion source condition. The ion source control unit is configured to control the gas supply unit and the plasma excitation source in accordance with the pre-treatment condition when the current ion source condition is changed to the new ion source condition.
US10283325B2
A processing chamber including multiple plasma sources in a process chamber top. Each one of the plasma sources is a ring plasma source including a primary winding and multiple ferrites. A plasma processing system is also described. A method of plasma processing is also described.
US10283319B2
Atomic layer etching (ALE) processes are disclosed. In some embodiments, the methods comprise at least one etch cycle in which the substrate is alternately and sequentially exposed to a first vapor phase non-metal halide reactant and a second vapor phase halide reactant. In some embodiments both the first and second reactants are chloride reactants. In some embodiments the first reactant is fluorinating gas and the second reactant is a chlorinating gas. In some embodiments a thermal ALE cycle is used in which the substrate is not contacted with a plasma reactant.
US10283316B2
In one embodiment, an aperture for inspecting a multi-beam allows passage of one beam among multi-beams applied in a multi-beam writing apparatus. The aperture includes a scattering layer that is provided with a through-hole through which the one beam passes, and by which the other beams are scattered, and an absorbing layer that is provided with an opening having a diameter greater than the diameter of the through-hole and that absorbs at least some of the beams entering it.
US10283306B2
A safety fuse includes a housing, a first contact blade having a protruding portion protruding from the housing along a first direction, a second contact blade having a protruding portion protruding from the housing, and a fusion section enclosed in the housing and connecting the first contact blade and the second contact blade. The protruding portion of the first contact blade includes two lateral edges extending in the first direction and a linear bend arranged on one of the lateral edges. The bend extends in a second direction perpendicular to the first direction.
US10283302B2
A electrical distribution system has been developed to provide a remote central control point for individual circuits, and methods have been developed for retrofitting it to existing service panels or installing it into new service panels. This system provides a power circuit monitoring and control system that fits inside standard residential service panels, both new and retrofitted panels. The entire system can be retrofitted into existing breaker panel systems without the need of removing any permanent structure such as a wall. During this retrofit process, the panel cover on the existing distribution panel is first removed after the power to it is disconnected. The old breaker assembly is removed from the panel, and a circuit controller is then installed in the now available space within the panel. A new service panel enclosure with a circuit breaker assembly is installed directly over top of the enclosure.
US10283290B2
A rotary switch with a knob having an axis of rotation and moveable to a plurality of angular positions and an elongated member extending in a longitudinal direction relative to the axis of the knob. A conductive member is positioned near a plurality of angularly displaced traces formed on a Printed Circuit Board. When the knob is rotated, the rotation is translated to longitudinal movement of the conductive member, which contacts at least one trace to close a circuit.
US10283286B2
A switch element for use in a potentially explosive area is disclosed. The switch element has a base plate, a housing connected to the base plate and forming a cavity between the base plate and the housing, the cavity communicating with an area exterior of the switch element through an opening formed in either the base plate or the housing, and a plurality of contacts for closing and opening an electrical circuit disposed in the cavity.
US10283275B2
In various examples, a feedthrough seal apparatus is configured to seal an opening in a device. The device includes a case surrounding an interior space, the case including the opening therein to allow access to the interior space from an exterior of the case. The feedthrough seal apparatus includes a plug disposed within the opening of the case. The plug is formed from at least one of a polymeric material and an adhesive material. The lead wire extends through the plug, such that a first end of the lead wire is disposed within the interior space of the case and a second end extends from the plug to the exterior of the case. The plug is configured to electrically insulate the lead wire from the case. Some examples include a method of making the feedthrough seal apparatus.
US10283270B2
An electronic component includes: a component body into which elements are built; and a metal plate electrode that is joined to the component body by conductive paste so as to be electrically coupled to the elements, wherein the metal plate electrode exceeds in size a surface of the component body onto which the conductive paste is deposited.
US10283260B2
Disclosed is a transformer for reducing eddy current losses of a coil, in which a cut part which is provided by removing a portion of a conductor is provided in each of an upper end and a lower end of a coil, and thus, eddy current losses caused by leakage flux are reduced. The transformer includes a core and a first coil and a second coil sequentially installed on a concentric circle to surround the core. A cut part which is provided by removing a portion of a conductor is provided at each of a first outer upper end and a first outer lower end of the first coil and a second inner upper end and a second inner lower end of the second coil to reduce an influence of leakage flux.
US10283253B2
A transformer system includes a termination constructed to mechanically couple to a customer electrical line and to electrically couple the transformer to the customer electrical line. A termination support may be coupled to the termination. The termination support may include a body having first wall and a second wall disposed perpendicular to the first wall, and an opening in the first wall and/or the second wall. A fastener may be disposed in the opening(s). The fastener may be constructed to clamp the termination support to the termination. The termination support may be constructed to provide mechanical support to the termination against the weight of the customer electrical line.
US10283243B2
A superconducting bulk magnet comprising a plurality of superconducting bulk materials combined, in which breakage of superconducting bulk materials is prevented and a strong magnetic field can be generated, that is, a superconducting bulk magnet comprising a plurality of superconducting bulk materials, each comprising a single-crystal formed RE1Ba2Cu3Oy (RE is one or more elements selected from Y or rare earth elements, where 6.8≤y≤7.1) in which RE2BaCuO5 is dispersed and each provided with a top surface, a bottom surface, and side surfaces, combined together, in which superconducting bulk magnet, bulk material units, each comprising a superconducting bulk material and a bulk material reinforcing member arranged so as to cover a side surface of the same, are arranged facing the same direction and contacting each other to form an assembly, a side surface of the assembly is covered by an assembly side surface reinforcing member, a top surface and bottom surface of the assembly are respectively covered by an assembly top reinforcing member and an assembly bottom reinforcing member, and the assembly side surface reinforcing member, the assembly top reinforcing member, and the assembly bottom reinforcing member are joined into an integral unit, is provided.
US10283228B2
Disclosed is an X-ray beam collimator. In one configuration, the collimator comprises an X-ray collimating portion having an X-ray transmission aperture formed therein. In one configuration, an electron absorbing portion is positioned in or arranged to overlie the X-ray transmission aperture. In one configuration, the X-ray collimating portion has a thickness in a direction through the aperture greater than a thickness in the same direction of the electron absorbing portion. In one configuration, the collimator comprises an x-ray collimating portion made of a conducting first material having an x-ray transmission aperture formed therein. In one configuration, an electron absorbing portion made of a conducting second material is arranged to plug or cover the x-ray transmission aperture. In one configuration, the first material is relatively more radiodense than the second material. Also disclosed is an x-ray beam apparatus, a method of reducing ozone generation and a structure manufacturing method using the disclosed collimator.
US10283226B2
A jet pump measuring pipe repair method that repairs a ruptured part of a measuring pipe horizontally installed to a lower portion of a jet pump provided in reactor water inside a reactor pressure vessel. The repair method includes: fixing a support member to the jet pump near the measuring pipe left remained; mounting, after the support member fixing, a measuring pipe connector provided with a pipe-repairing pipe having both ends over which connecting pipes are fitted, respectively, to the support member; connecting, after the connector mounting, the remaining measuring pipe and connecting pipe using the measuring pipe connector.
US10283224B2
Systems and methods for providing and using molten salt reactors are described. While the systems can include any suitable component, in some cases, they include a graphite reactor core defining an internal space that houses one or more fuel wedges, where each wedge defines one or more fuel channels that extend from a first end to a second end of the wedge. In some cases, one or more of the fuel wedges comprise multiple wedge sections that are coupled together end to end and/or in any other suitable manner. In some cases, one or more alignment pins also extend between two sections of a fuel wedge to align the sections. In some cases, one or more seals are also disposed between two sections of a fuel wedge. Thus, in some cases, the reactor core can be relatively long (e.g., to be a pipeline reactor). Other implementations are also described.
US10283223B2
Systems and methods for providing a molten salt reactor can include a graphite reactor core that defines an internal space, with multiple fuel wedges being received in the internal space, and with the wedges each defining a fuel channel extending from a first end to a second end of each of the wedges. The reactor can further include a fuel pin rod that defines an internal fuel conduit and that is disposed between at least two of the wedges. The reactor core can also define a fuel ingress port and a fuel egress port. The reactor core can further be rotatably received within a reactor housing such that the ports are configured to become at least one of more occluded and less occluded as the reactor core rotates.
US10283219B2
A wearable device comprising a memory storing a database of product codes and associated product recommendations derived from personalised biological information, a product code reader for reading a product code or data from a product, and a processor for using a read product code or read data to perform a look-up in the database to obtain a product recommendation for the associated product. The wearable device further comprises an indicator for providing an indication of the obtained product recommendation to a wearer of the device.
US10283214B2
A semiconductor device is provided where it is possible to access and test a memory chip by a simple method. The semiconductor device that mounts a plurality of chips in a common package includes a logic chip having a predetermined function and a memory chip that is coupled with the logic chip and stores data. The memory chip includes a memory chip testing circuit that performs an operation test of the memory chip and a serial bus interface circuit for transmitting and receiving data between the memory chip testing circuit and a serial bus provided outside the package.
US10283204B2
In a method of operating a nonvolatile memory device, a first sub-block to be erased is selected in a first memory block including the first sub-block and a second sub-block adjacent to the first sub-block, in response to a erase command and an address. The first sub-block includes memory cells connected to a plurality of word-lines including at least one boundary word-line adjacent to the second sub-block and internal word-lines other than the at least one boundary word-line. An erase voltage is applied to a substrate in which the first memory block is formed. Based on a voltage level of the erase voltage applied to the substrate, applying, a first erase bias condition to the at least one boundary word-line and a second erase bias condition different from the first erase bias condition to the internal word-lines during an erase operation being performed on the first sub-block.
US10283195B2
Methods of operating a memory include receiving data for programming to a plurality of memory cells of the memory, redistributing the received data in a reversible manner, programming the redistributed data to the plurality of memory cells, and programming respective second data to each memory cell of the plurality of memory cells containing the redistributed data, wherein the respective second data for any memory cell of the plurality of memory cells has a same data value as the respective second data for each remaining memory cell of the plurality of memory cells.
US10283194B2
A semiconductor storage device having a plurality of low power consumption modes is provided.The semiconductor storage device includes a plurality of memory modules where a plurality of low power consumption modes can be set and cancelled based on a first and a second control signals. At least a part of memory modules of the plurality of memory modules have a propagation path that propagates an inputted first control signal to a post stage memory module. The second control signal is inputted into each of the plurality of memory modules in parallel. Setting and cancelling of the first low power consumption mode of each memory module are performed based on a combination of the first control signal that is propagated through the propagation path and the second control signal. Setting and cancelling of the second low power consumption mode, in which regions where a power source is shut down are different from those in the first low power consumption mode, of each memory module are sequentially performed according to the first control signal that is propagated through the propagation path.
US10283192B2
Retention voltage generation circuits and electronic apparatus are provided. An exemplary retention voltage generation circuit includes a driving circuit, configured to generate driving currents; a first retention voltage generation circuit, configured to generate a first retention voltage, the first retention voltage being substantially equal to a threshold voltage of an NMOS transistor in a power-consumption circuit; a second retention voltage generation circuit, configured to generate a second retention voltage, the second retention voltage being substantially equal to a threshold voltage of a PMOS transistor in the power-consumption circuit; and a retention voltage selection circuit, coupled to the first retention voltage generation circuit and the second retention voltage generation circuit, and configured to receive the driving currents, wherein retention voltage selection circuit is configured to select a higher voltage from the first retention voltage and the second retention voltage as a retention voltage to drive the power-consumption circuit to operate at a retention mode.
US10283180B2
A nonvolatile semiconductor memory includes a resistance-change element having first and second terminals, a transistor having third and fourth terminals and a control terminal, the third terminal being connected to the second terminal, and a first driver electrically connected to the control terminal, applying a first potential to the control terminal in a first write operation, and applying a second potential larger than the first potential to the control terminal in a second write operation.
US10283178B2
A semiconductor device which reduces power consumption. In the semiconductor device, semiconductor chips are stacked over a base chip. The stacked chips include n through-silicon vias as a first group and m through-silicon vias as a second group. In each of the first and second groups, the through-silicon vias are coupled by a shift circular method, in which the 1st to (n−1)th ((m−1)th) through-silicon vias of a lower chip are coupled with the 2nd to n-th (m-th) through-silicon vias of an upper chip respectively and the n-th (m-th) through-silicon via of the lower chip is coupled with the 1st through-silicon via of the upper chip. n and m have only one common divisor. Activation of the stacked semiconductor chips is controlled by combination of a first selection signal transmitted through through-silicon vias of the first group and a second selection signal transmitted through through-silicon vias of the second group.
US10283177B1
A system for controlling a hold-margin in a semiconductor memory device includes a programmable RC network communicatively coupled to a delay logic circuit, a latch clock generator and a latch circuit. A delay associated with a clock path is induced using a combination of a logic circuit and a wire placed across at least one of a column and a row of the semiconductor memory device. A delay associated with the data path is induced using a combination of the delay logic circuit and at least one of the load cell and a wire routed across at least one of a column and a row of the semiconductor memory device. The system controls the hold-margin based on the delay associated with the data path and the delay associated with the clock path.
US10283175B1
The present application provides a status output method in NAND flash memory, including, setting ALE signal, CLE signal and WE#, signal wherein ALE and/or CLE signal is set to be 1 and WE# signal is set to be 1; when a falling edge of the RE# is detected, outputting LUN status signal of the NAND flash memory. Further, there is provided a NAND flash memory, including I/O signal pins, which includes an ALE signal pin, an CLE signal pin, a WE# signal pin, and a RE# signal pin; wherein when the ALE signal output by the ALE pin and/or CLE signal output by the CLE pin is 1, and WE# signal output by the WE# pin is 1, once a falling edge of the RE# is detected, the LUN status signal of the NAND flash memory is detected.
US10283170B2
An aspect of the present invention includes a module comprising a printed circuit board and a SSD case with at least one structural component that is removably coupled to the printed circuit board, whereby the at least one structural component is a power source. An aspect of the present invention includes a method of providing power to a module, comprising the steps of providing a printed circuit board and removably connecting a SSD case with at least one structural component to the printed circuit board, whereby the at least one structural component is a power source.
US10283169B1
A hard disk drive damper plate comprises a planar main body having a generally rectangular cross-section and a splitter portion extending away from the main body in a radial direction. The splitter portion operates to disrupt vortex shedding corresponding to secondary gas flow associated with the planar main body. Various embodiments involve the length, thickness, and shape of the splitter portion, as well as how much of the planar main body may be provisioned with such a splitter portion.
US10283166B2
A video indexing method includes: analyzing trajectory information of a plurality of objects in video data and storing a plurality of pieces of object trajectory data obtained correspondingly in a storage device; determining whether the storage device satisfies a data removal condition; when the data removal condition is satisfied, performing an object trajectory analysis on the plurality of pieces of object trajectory data to select at least one target object from the objects; and extracting the object trajectory data of the at least one target object from the storage device and generating at least one video indexing image accordingly.
US10283155B2
A magnetic recording medium includes a non-magnetic substrate on which at least a soft magnetic underlayer, an orientation control layer, a perpendicular magnetic layer, and a protective layer are disposed. The perpendicular magnetic layer includes first to fourth magnetic layers. A first exchange coupling control layer is disposed between the first magnetic layer and the second magnetic layer. A second exchange coupling control layer is disposed between the second magnetic layer and the third magnetic layer. Following relations are satisfied where Kui is a magnetic anisotropic constant of an i-th magnetic layer, Msi is a saturation magnetization of the i-th magnetic layer, and ti is a film thickness of the i-th magnetic layer, Ku1>Ku2, Ku2>Ku3, Ms1×t1>Ms2×t2, Ms2×t2>Ms3×t3, Ku3
US10283154B2
A magnetic recording medium includes a substrate, a barrier layer, a crystal grain size control layer, and a magnetic layer that are arranged in this order. The barrier layer includes at least one of oxides, nitrides, and carbides, and the crystal grain size control layer is a crystalline layer including Ag and having an average thickness in a range of 0.1 nm to 1 nm. The barrier layer makes contact with the crystal grain size control layer, and the magnetic layer includes an alloy having a L10 crystal structure and a (001) face orientation.
US10283152B1
A recording head includes a waveguide configured to deliver light from a light source to a media-facing surface of the recording head. A near-field transducer is at the media-facing surface the proximate the waveguide. The near-field transducer includes a plasmonic structure with at least two opposing internal surfaces. A dielectric material fills a region between the at least two opposing internal surfaces. A dielectric slit extends between the at least two opposing internal surfaces. The dielectric slit is substantially parallel to the media-facing surface and includes a transparent material with a refractive index different than that of the dielectric material.
US10283150B2
Disclosed herein are suspension assembly structures for data storage devices that include physical or virtual crossovers of the pairs of differential signal traces to improve immunity to crosstalk and other interference. In an embodiment, the suspension assembly structure comprises a first trace for carrying a first component of a current to a differential transducer on a slider, a second trace for carrying a second component of the current to the differential transducer on the slider, and third and fourth traces for providing a differential write current to a writer of the data storage device, wherein the first trace physically crosses over the second trace at a first distance from a tail of the suspension assembly structure.
US10283129B1
Systems and methods are provided herein relating to audio matching. Interest points that are onsets are generally very efficient in audio matching in that they are robust to multiple types of distortion. Prominent onsets can be detected within an audio signal excerpt as interest points and combined as a function of a set of interest points to form a descriptor. Descriptors associated with an audio signal excerpt that contain a set of prominent onsets as interest points can be used in matching the audio signal excerpt to an audio reference. The benefits in generating and using prominent onsets within descriptors improve the accuracy of an audio matching system.
US10283126B2
The invention provides methods and devices for stereo encoding and decoding using complex prediction in the frequency domain. In one embodiment, a decoding method, for obtaining an output stereo signal from an input stereo signal encoded by complex prediction coding and comprising first frequency-domain representations of two input channels, comprises the upmixing steps of: (i) computing a second frequency-domain representation of a first input channel; and (ii) computing an output channel on the basis of the first and second frequency-domain representations of the first input channel, the first frequency-domain representation of the second input channel and a complex prediction coefficient. The upmixing can be suspended responsive to control data.
US10283125B2
An error concealment method and apparatus for an audio signal and a decoding method and apparatus for an audio signal using the error concealment method and apparatus. The error concealment method includes selecting one of an error concealment in a frequency domain and an error concealment in a time domain as an error concealment scheme for a current frame based on a predetermined criteria when an error occurs in the current frame, selecting one of a repetition scheme and an interpolation scheme in the frequency domain as the error concealment scheme for the current frame based on a predetermined criteria when the error concealment in the frequency domain is selected, and concealing the error of the current frame using the selected scheme.
US10283121B1
A voice controlled assistant has a housing to hold one or more microphones, one or more speakers, and various computing components. The housing has an elongated cylindrical body extending along a center axis between a base end and a top end. The microphone(s) are mounted in the top end and the speaker(s) are mounted proximal to the base end. The microphone(s) and speaker(s) are coaxially aligned along the center axis. The speaker(s) are oriented to output sound directionally toward the base end and opposite to the microphone(s) in the top end. The sound may then be redirected in a radial outward direction from the center axis at the base end so that the sound is output symmetric to, and equidistance from, the microphone(s).
US10283120B2
A method of producing output indicative of the content of speech or mouthed speech from movement of speech articulators is described. The method may including fixing a plurality of magnets respectively to a plurality of speech articulators of a human individual. Providing a support. Providing a plurality of signal magnetic field sensors. Providing at least three reference magnetic field sensors orientated differently from one another with respect to the Earth's magnetic field. The signal and reference magnetic field sensors being fixed to the support which holds the sensors in fixed spatial relationships to one another. Producing, over a period of time, a respective signal from each signal magnetic field sensor and a respective signal from each reference magnetic field sensor. Obtaining, over the period of time, for each said signal magnetic field sensor signal, a respective correction value.
US10283105B2
The technology described in this document can be embodied in a computer-implemented method that includes receiving a first plurality of values representing a set of current coefficients of an adaptive filter disposed in an active noise cancellation system. The method also includes computing a second plurality of values each of which represents an instantaneous difference between a current coefficient and a corresponding preceding coefficient of the adaptive filter, and estimating, based on the second plurality of values, one or more instantaneous magnitudes of a transfer function that represents an effect of a secondary path of the active noise cancellation system. The method further includes updating the first plurality of values based on estimates of the one or more instantaneous magnitudes to generate a set of updated coefficients for the adaptive filter, and programming the adaptive filter with the set of updated coefficients.
US10283083B2
A layer selection module for a graphics display component, and method therefor. The layer selection module is arranged to identify a set M of active layers to be blended for a pixel, configure a display controller to generate composite pixel data for the pixel based on a subset N of up to n layers from the set M, determine whether a number m of active layers in the set M exceeds n, and output an indication of which active layers within the set M were excluded from the subset N, if it is determined that the number m of layers in the set M exceeds n.
US10283067B2
The invention provides a GOA driving circuit, comprising: a plurality of GOA units connected in cascade, each GOA unit comprising a pull-up control module (1), a pull-up module (2), a pull-down module (3), a first pull-down maintenance module (4), and a second pull-down maintenance module (5); on the basis of ensuring the normal function of the GOA unit, the pull-down module (3) uses one less TFT than the prior art, the first pull-down maintenance module (4) uses one less TFT than the prior art, the second pull-down maintenance module (5) uses one less TFT than the prior art, thereby saving the wiring area used by GOA driving circuit and facilitating the narrow border LCD. The invention provides an LCD using the GOA driving circuit. Therefore, the number of the TFTs of the GOA driving circuit is less, the wiring area is smaller, and the LCD border is narrower.
US10283063B2
According to one embodiment, a display device includes a pixel circuit including first, second and third switches, a capacitor and an inverter, and a pixel electrode connected to the pixel circuit, the first switch including a first control electrode connected to a gate line and a first input terminal connected to a source line, the capacitor including a first terminal connected to a reference potential and a second terminal connected to the first output terminal, the third switch including a second input terminal and a second output terminal connected to the second terminal, and the second switch and the inverter being connected in series between the second terminal and the second input terminal.
US10283053B2
An active matrix display wherein each cell comprises: two thin-film transistors (TFTs) connected in series, the first TFT having its drain connected to a high supply line and the second TFT having its source connected to a low supply line. Gates of the first and second TFTs are selectively connected to respective first and second data driver signals under the control of a scan line signal. A storage capacitance is connected to a node joining the first and second TFT. A driving TFT has a gate connected to the joining node and is connected to drive a light emitting device with a bias current. In one embodiment, the first and second TFTs are sized relative to one another and the first and second data driver signal voltages are related proportionally, so that the data driver signals and the bias current are related to one another by a function substantially independent of a threshold voltage of the driving TFT.
US10283050B2
The present invention discloses a driving power supply, a display driving circuit and an organic light emitting diode display. The driving power supply comprises a boost module and a voltage adjusting module connected to the boost module; the boost module is used for boosting an initial voltage input from an initial voltage input terminal of the driving power supply to generate a reference voltage and outputting the reference voltage to the voltage adjusting module; the voltage adjusting module is used for adjusting magnitude of the reference voltage according to colors of pixel units to be driven to generate a plurality of driving voltages, respectively, and the driving voltages corresponding to pixel units of different colors are different.
US10283047B2
A display device is configured to be driven in a period that is divided into a driving period and a sensing period. The display device includes pixels including driving transistors coupled to scan lines, data lines, and sensing lines, a scan driver configured to supply scan signals to the scan lines, a data driver configured to supply at least one of a reference voltage and data signals to the data lines, a sensing unit configured to sense the characteristic information via the sensing lines during the sensing period, control lines formed in parallel with the scan lines, a first switch coupled between an n-th scan line and an n-th control line, and a second switch coupled between the n-th control line and an (n+1)-th scan line and configured such that a turn-on period of the second switch does not overlap a turn-on period of the first switch.
US10283044B2
A display device correction method is provided for correcting luminance unevenness in a display device including pixels, which are arranged in a matrix and include light-emitting elements that emit light according to a luminance signal. The method includes obtaining in advance first correction data, which includes correction data components each corresponding to a different one of the pixels and is for correcting the luminance signal. The method also includes transforming the first correction data into second correction data by decomposing the correction data components included in the first correction data into frequency components, and removing a predetermined frequency component among the frequency components. The method further includes correcting the luminance signal using the second correction data.
US10283027B2
A dual gate array substrate is disclosed. In two vertically adjacent pixel pairs, two pixel units in each of the pixel pairs are connected to the same data line of the two adjacent data lines respectively, and two adjacent pixel units in the two pixel pairs in an extending direction of the data line are connected to different data lines in the two adjacent data lines respectively; in two adjacent pixel pairs in an extending direction of any set of the dual gate lines, a data line connected to two pixel units in one pixel pair is different from but adjacent to a data line connected to two pixel units in the other pixel pair; and two adjacent pixel units in the extending direction of the data line are connected to their respective adjacent gate lines transmitting different scan signals respectively.
US10283024B2
A display device and a method for driving the display device are disclosed. The display device comprises a black and white liquid crystal display panel, an organic light emitting display panel, and a control unit. The control unit is configured to control the organic light emitting display panel to emit light, at least divide a frame of display time into a first time period, a second time period, and a third time period, and to drive the first primary color sub-pixel to emit light only in the first time period, the second primary color sub-pixel to emit light only in the second time period, and the third primary color sub-pixel to emit light only in the third time period. According to embodiments of the present invention, there is no need to provide lenticular lenses or a slit grating to realize 3D display, thus reducing production cost.
US10283020B1
The traffic warning sign is an illuminated display that is monitors the passing of a vehicle. The traffic warning sign determines whether the passing vehicle is in compliance with laws regarding the operation of vehicle headlights of the vehicle. If the traffic warning sign determines that the passing vehicle is not in compliance with the laws regarding the operation of vehicle headlights, the traffic warning sign illuminates a display panel conveying to the vehicle operator a message to turn on the vehicle headlights. The traffic warning sign comprises a housing, a display panel, and a control system. The control system controls the illumination of the display panel. The display panel is a translucent structure that is backlit. When illuminated, the display panel displays an indicia that conveys the sentiment to turn on the vehicle headlights. The housing contains the control system and the display panel.
US10283016B2
Provided is a thoracic cavity simulator that, for the purpose of training or education in thoracic cavity microscopic surgery, faithfully reproduces the shape and feel of a human body and that can simulate a surgical environment for a human body that has multiple constraints. A device that comprises a model human skeleton that simulates at least ribs, and comprises a casing that houses the model human skeleton, the device being configured such that an opening is provided to a rib section of the casing, such that a diaphragm section can be opened and closed, and such that model organs can be housed inside the ribs of the model human skeleton. The diaphragm section is configured so as to be removable and/or openable and closable, and the model organs housed inside the ribs of the model human skeleton are replaced.
US10283015B2
A device to simulate a surface bleeding is provided. The device includes A source of a blood liquid; A pump system connected to the source of blood liquid and configured to provide a controlled flow of said blood liquid; A wound simulator having an open chamber connected to the pump system to receive the controlled flow of blood liquid, wherein the wound simulator includes a set of interchangeable plates having a plurality of holes arranged through said plates according to a specific pattern, and each plate being adapted to be removably mounted on the wound simulator to close the open chamber, so that blood liquid flows out of the chamber through the holes of the plate mounted on the wound simulator.
US10283014B2
An embodiment of a medicament training system configured to provide instructions for using a medicament device to a user in a sequence of steps is provided. The medicament training system includes including a medicament training container, a medicament device, wherein the medicament training container communicatingly connects to the medicament device, a signal output component associated with the medicament training container, and circuitry associated with the medicament training container configured so as to control a provision of the instructions to the user in the sequence of steps.
US10283012B2
The present invention relates generally to music notes for an easy note reading. In particular, the invention relates to make music note reading much easier, including piano notes.
US10283001B2
An optimization model is selected to reduce a number of passengers adversely affected by a delay of an aircraft. A cascade boundary is determined for a length of the delay, which projects the delay at the plurality of airports. Using the optimization model, a probability curve is computed at an airport from the plurality of airports, which outputs a second length of the delay experienced at the airport responsive to the cascade boundary projecting the delay on the airport. The length is adjusted in the optimization model such that a count of passengers adversely affected by the delay at the airport at the elapse of the second length is minimized. A target system is caused to configure the aircraft to be delayed by the adjusted length.
US10283000B2
A system for enabling an unmanned aerial vehicle (UAV) to respond to an alert on a premises, where the UAV may either confront the alert situation or monitor the alert situation from a distance. The UAV may respond to the alert situation after a controller receives alert event data from an alert generator. The controller may further match the data received to a number of event types stored in a database. This information allows a flight plan to be determined which will allow the UAV to navigate to a location associated with the alert situation.
US10282996B1
A method of performing collision prevention and a system to perform collision prevention involve a communication interface to receive information from connected devices of individuals. The system also includes a processor to obtain the information from the connected devices, estimate a potential for an upcoming collision, and issue an alert based on the potential for the upcoming collision to one or more of the connected devices.
US10282983B2
A traffic volume determination system includes a processor configured to: calculate, while taking account of a change between a past traffic volume and a current traffic volume of vehicles passing through an area around a link, an estimated value of the current traffic volume of the vehicles passing through the link from the past traffic volume of the vehicles passing through the link; and determine that the link is closed when a current actual traffic volume of the vehicles passing through the link is smaller than the estimated value of the current traffic volume of the vehicles passing through the link by more than a statistical error.
US10282982B2
Various systems and methods for collecting and generating analytics of data from motor vehicle safety and operation systems are disclosed herein. In one example, various minor vehicle incidents and events such as hard braking, swerving, deceleration, are tracked and correlated to geographic locations. Event data for these incidents may be collected, aggregated, anonymized, and electronically communicated to a processing system for further analysis and identification of problematic roadway and traffic conditions.
US10282971B2
A method and apparatus for monitoring drug-regimen compliance is disclosed. Systems in accordance with the present invention enable automatic monitoring of the state of medicine content of a blister card. Each tablet location on the blister card is operatively coupled with a different sensor that detects whether the tablet location is occupied and/or a dispensing event at a tablet location. In some embodiments, capacitive sensing is employed, where the capacitance of each sensor is based on the physical state of a dispensing region of the lidding film of the blister pack, which is located at the tablet location being monitored. Alternative sensing approaches are based on optical, acoustic, and tactile sensors that interrogate either the dispensing region at each tablet location or the tablets themselves to determine whether tablets have been dispensed. The sensors interface with a mobile app that provides the user instructions to help improve drug-regimen compliance.
US10282965B2
Techniques are disclosed for using synthetic jet technology as an air delivery device for sensing applications. In particular, a synthetic jet device is used to deliver a controlled airflow or other fluidic flow to a sensor measurement area. Such a sensing system can be used to detect accurate concentration of target features present in the ambient surroundings, such as gases, particles, solutions, mixtures, and any other environmental features that can be sensed from a controlled airflow. An example application is air quality monitoring by using one or more synthetic jet devices to deliver a known or otherwise controlled airflow to a sensing area, thereby allowing for detection of harmful or otherwise unacceptable concentrations of particulate matter, gases, or air pollutants. In some embodiments, a synthetic jet device is operatively coupled with a sensor via a flow channel in a common housing, so as to provide a controlled flow sensing system.
US10282959B2
Systems and methods for determining an actual fatigue time (AFT) for an activity are provided. The method comprises receiving a standard fatigue time (SFT) representing a time duration. The SFT is indicative of an onset of fatigue in individuals upon continuously performing the activity. The method further comprises receiving at least one external parameter and a fatigue index corresponding to the at least one external parameter. The at least one external parameter and the fatigue index are associated with the activity. The method further comprises determining the AFT for the activity based upon the SFT and the fatigue index.
US10282957B1
A system for detecting an overheat condition in a confined space includes a sensing device and one or more processors. The sensing device is attached to a wall of the confined space. The sensing device includes a laser range sensor, a thermal imaging sensor, and a wireless communication circuit. The laser range sensor measures a distance from the sensing device to a target object within the confined space. The thermal imaging sensor measures thermal radiation emitted from the target object. The wireless communication circuit remotely communicates distance data representing the distance measured by the laser range sensor and radiation data representing the thermal radiation measured by the thermal imaging sensor. The one or more processors are configured to determine a temperature of the target object based on the distance data and the radiation data.
US10282945B2
A wagering platform is described that enables bettors to wager on more games than their budgets or account balances would otherwise allow, without extending them credit and without sacrificing the house advantage. The platform allows the bettor to select a plurality of wagers and designates the maximum amount he or she is willing to risk. Based on those inputs, the platform generates a wager amount that the bettor can stake on each selected wager (which will total more than the bettor's maximum risk amount). Related apparatus, systems, techniques and articles are also described.
US10282940B2
Various example embodiments are directed to a computer-implemented gaming management system for facilitating applications that support user wagering. The gaming management system may comprise a computer system in communication with a developer computer device. The computer system may be programmed to receive from the developer computer device configuration data for a contingent event to be associated with a user application; determine whether the configuration data meets at least one predetermined standard; and provided that the configuration data meets the at least one predetermined standard, provide the developer computer device with an application program interface (API) credential to be utilized by the user application, wherein the API credential is to give the user application access to an API for resolving the contingent event.
US10282938B1
Various embodiments of a gaming system and method are disclosed as having a slide out information area that can be displayed substantially simultaneously with a game on one display screen while efficiently using gaming system hardware resources. The slide out information area enables a player to easily access game information without leaving or interrupting a play of a game. The slide out information area also minimizes the need for the player to switch the player's gaze from the game screen to another screen.
US10282937B2
A gaming system comprising a display area and a player symbol selector for selecting the player symbols from a plurality of player symbols. The player symbol selector comprises a plurality of reels and each reel has a plurality of player symbols. The player symbol selector is arranged so that selected player symbols are displayed at an array of display positions when the reels are stationary. A display position selector enables a player to select, prior to stopping of the reels, groups of display positions. An award allocator allocates an award associated with a winning combination of the player symbols when a winning combination of the player symbols is displayed along a win line. The player symbol selector is arranged so that each one of different player symbols of each reel has the same probability to be displayed at any one of the display positions associated with that reel.
US10282935B2
Various prison services are rendered more efficient by providing inmates access to portable electronic devices in a controlled and regulated manner. A dispenser is employed to control and monitor the checking out and return of portable electronic devices and to communicate with such devices during use by inmates to monitor inmate use and ensure the portable electronic devices are only used by inmates as authorized.
US10282931B2
In a coin depositing and dispensing machine 10, a plurality of storing and feeding apparatuses 50 disposed below a deposited-coin transport unit 20 are arranged vertically on plural levels. A transport direction in which a coin is transported by the deposited-coin transport unit and a feeding direction in which a coin is fed out from each storing and feeding unit are substantially perpendicular to each other.
US10282930B2
It is presented an access control communication device comprising: a short distance radio communication module; a cellular radio communication module; and a controller arranged to communicate access rights associated with a key device, using the cellular radio communication module, with an access control device over a cellular communication network, the communicating comprising sending a request for access management data associated with the lock device, and receiving access management data associated with the lock device; and the controller further being arranged to transmit the access management data to the key device for transfer to the lock device, the communicating and transmitting being arranged to be performed upon the access control device being in communication with the key device using the short distance radio communication module. A corresponding method, computer program and computer program product area also presented.
US10282925B2
A system and algorithm-based method of determining engine health and assuring available propulsion power based on historical data reflecting the individual engine's unique performance “fingerprint.”
US10282916B2
Some embodiments provide a mapping application that displays a rotation of a 3D map and corresponding rotation of a set of map labels overlaying the 3D map in response to receiving input to rotate the 3D map. When a particular map label in the set of map labels rotates towards an upside down orientation, the mapping application also replaces the particular map label with a version of the particular map label arranged in a right side up orientation to prevent the particular map label from being displayed in the upside down orientation in the 3D map.
US10282907B2
One embodiment is directed to a system for enabling two or more users to interact within a virtual world comprising virtual world data, comprising a computer network comprising one or more computing devices, the one or more computing devices comprising memory, processing circuitry, and software stored at least in part in the memory and executable by the processing circuitry to process at least a portion of the virtual world data; wherein at least a first portion of the virtual world data originates from a first user virtual world local to a first user, and wherein the computer network is operable to transmit the first portion to a user device for presentation to a second user, such that the second user may experience the first portion from the location of the second user, such that aspects of the first user virtual world are effectively passed to the second user.
US10282896B1
A method for zone analysis. A zone is identified in a three-dimensional physical model of a vehicle. The three-dimensional physical model includes geometry information and location information for physical components. An effect of an undesired operation of a group of components in a zone within the three-dimensional physical model of the vehicle is identified based on the three-dimensional physical model of the vehicle and a logical model of the vehicle including a logical architecture linking logical components to each other. Logical components in the logical model are mapped to the physical components in the three-dimensional physical model of the vehicle.
US10282893B2
An image processing apparatus generates intermediate volume data from a plurality of volume data segments obtained as time passes so as to implement high-speed volume data. A medical imaging apparatus that includes the image processing apparatus, an ultrasonic imaging apparatus, an image processing method, and a medical image generation method are disclosed. The image processing apparatus includes a displacement vector generator configured to detect corresponding voxels between reference volume data and target volume data that has been acquired at intervals of a predetermined time period, and to generate a displacement vector between the corresponding voxels; and an intermediate volume data generator configured to generate at least one piece of intermediate volume data between the reference volume data and the target volume data by using the generated displacement vector.
US10282892B2
Volume rendering is performed by a method, comprising: obtaining an original volume data, transforming the original volume data based on a distance from a viewpoint to the original volume data, to generate transformed volume data, generating particles from the transformed volume data, and projecting the particles on an image plane to obtain a 2D image corresponding to the original volume data.
US10282891B2
An apparatus and method of processing three-dimensional (3D) images on a multi-layer display may generate virtual depth information based on original depth information, and display 3D images having various depth values using the generated virtual depth information. Also, the apparatus and method may appropriately provide color information to each of a plurality of display layers, thereby preventing an original image from being damaged.
US10282888B2
A 3-dimensional image is displayed in high resolution colors by generating a 3-dimensional model as a triangular mesh, converting the mesh into a grid of voxels, and assigning attribute values to a portion of the voxels. Laplacian interpolation based on the portion of the voxels is applied for iteratively calculating interpolated attribute values of other voxels. The voxels are rendered as a colored image according to the attribute values on a display.
US10282878B2
Various methods are provided for generating and annotating a graph. One example method may include determining one or more key patterns in a primary data channel, wherein the primary data channel is derived from raw input data in response to a constraint being satisfied. A method may further include determining one or more significant patterns in one or more related data channels. A method may further include generating a natural language annotation for at least one of the one or more key patterns or the one or more significant patterns. A method may further include generating a graph that is configured to be displayed in a user interface, the graph having at least a portion of the one or more key patterns, the one or more significant patterns and the natural language annotation.
US10282877B2
The present disclosure is directed towards systems and methods for modifying a digital image. For example, systems and methods described herein involve identifying a target portion of a digital image to remove from the digital image. The systems and methods further involve identifying geometric features intersecting or surrounding the identified target portion. The systems and methods further involve analyzing and identifying a source portion having geometric properties that correspond to the identified geometric features intersecting the target portion. Further, the systems and methods involve removing the target portion and replacing the target portion with the source portion by aligning the geometric properties to blend together with the background surrounding the removed target portion. In this way, the output image includes a replacement portion in place of the removed target portion that blends together with the background of the output image.
US10282873B2
A CT alignment system includes a central processing unit (CPU) that processes a plurality of CT images. The CPU determines a location of a main carina from the plurality of CT images and sets the main carina as a point of origin. An x-coordinate, a y-coordinate, and a z-coordinate is calculated for each pixel in each CT image among the plurality of CT images based on the point of origin. A 3D model is rendered from the plurality of CT images and the x-coordinate, the y-coordinate, and the z-coordinate for each pixel in each CT image is associated with a corresponding voxel in the 3D model. The x-coordinate, the y-coordinate, and the z-coordinate for each corresponding voxel in the 3D model is stored as voxel position data. A graphics processing unit (GPU) renders a three dimensional (3D) model based on the plurality of CT images and the voxel position data which is displayed on a display.
US10282871B2
A method may include; obtaining a 3D CT image of a scanning area of a subject; obtaining PET data of the scanning area of the subject; gating the PET data based on a plurality of motion phases; reconstructing a plurality of gated 3D PET images; registering the plurality of gated 3D PET images with a reference 3D PET image; determining a motion vector field corresponding to a gated 3D PET image of the plurality of gated 3D PET images based on the registration; determining a motion phase for each of the plurality of CT image layers; correcting, for each of the plurality of CT image layers, the CT image layer with respect to a reference motion phase; and reconstructing a gated PET image with respect to the reference motion phase based on the corrected CT image layers and the PET data.
US10282866B2
Systems and methods for reducing bit rates by replacing original texture in a video sequence with synthesized texture. Reducing the bit rate of the video sequence begins by identifying and removing selected texture from frames in a video sequence. The removed texture is analyzed to generate texture parameters. New texture is synthesized using the texture parameters in combination with a set of constraints. Then, the newly synthesized texture is mapped back into the frames of the video sequence from which the original texture was removed. The resulting frames are then encoded. The bit rate of the video sequence with the synthesized texture is less than the bit rate of the video sequence with the original texture. Also, the ability of a decoder to decode the new video sequence is not compromised because no assumptions are made about the texture synthesis capabilities of the decoder.
US10282864B1
A method for encoding an image based on convolutional neural network is provided. The method includes steps of: a learning device a learning device including a first to an n-th convolutional layers, (a) obtaining at least one input image; (b) instructing each of at least one of the convolutional layers to (i) apply one or more transposed convolution operations to the input image or an input feature map received from its corresponding previous convolutional layer, to thereby generate one or more transposed feature maps which have different sizes respectively, and (ii) apply one or more convolution operations, with a different stride and a different kernel size, to their corresponding transposed feature maps, to thereby generate their corresponding one or more inception feature maps as a first group; and (c) concatenating or element-wise adding the inception feature maps included in the first group to thereby generate its corresponding output feature map.
US10282861B2
The position and/or pose of a vehicle is determined in real time. An observed position and an observed pose of a vehicle are determined. A reference image is generated based on the observed position and the observed pose. The reference image comprises one or more reference static features. A captured image and the reference image are implicitly compared. Based on a result of the comparison, a correction to the observed position, the observed pose, or both is determined.
US10282850B2
A system is provided for determining coordinated motion between objects. The system includes a velocity data receiving component, a position data receiving component, a multidimensional indexing component and a determining component. The velocity data receiving component receives velocity data of the objects. The position data receiving component receives position data of the objects. The multidimensional indexing component generates multidimensional indices of the objects based on the velocity data and position data. The determining component determines whether there is coordinated motion between objects based on the multidimensional indices.
US10282847B2
The present invention relates to the field of passenger conveyor technologies, and provides a monitoring system of a passenger conveyor and a monitoring method thereof. In the monitoring system and detection method of the present invention, a monitored object of the passenger conveyor is sensed by using an imaging sensor and/or a depth sensing sensor to acquire a data frame, and the data frame is analyzed by a processing apparatus to monitor whether the monitored object is in a normal state. The monitored object may include a landing plate, a step, a barrier used in a maintenance and repair working condition and/or a step speed, and the like.
US10282843B2
A method for image analysis comprises receiving one or more current images of a lesion from a body of a person, wherein the one or more current images are electronically captured by and transmitted from a capture device, and analyzing the one or more current images, wherein the analyzing comprises performing image processing to compare the one or more current images captured at a first time to one or more previous images of the lesion captured at a second time prior to the first time, and determining at least one difference between the one or more current images and the one or more previous images based on the comparing. The method further comprises determining a probability that the lesion will become diseased based on the analysis, and recommending a time for a future image capture of the lesion and/or a consultation with a practitioner based on the determined probability.
US10282837B2
An image measuring apparatus according to an embodiment of the present invention comprises: an imaging device that images a workpiece to acquire an image of this workpiece; and a processing device that performs measurement of the workpiece based on this image and outputs a measurement result. Moreover, the processing device sets a region in the image, sets a plurality of first points along a contour line of this region, sequentially moves these plurality of first points so that the plurality of first points approximate to the contour line included in the image, acquires the moved plurality of first points as a plurality of second points, and calculates the measurement result based on these plurality of second points.
US10282831B2
An apparatus for motion compensated noise reduction for input images is provided. The motion estimation and motion compensation circuit performs a motion estimation operation and a motion compensation operation on a current image and a previous image to obtain a first patch. The block matching operation circuit performs a block matching operation on the current image and the previous image to obtain a second patch. The motion detection circuit performs a motion detection operation on a target patch according to the first patch and the second patch to output a set of third patches. The current image includes the target patch. The noise reduction circuit performs a noise reduction operation on the set of third patches according to a threshold curve, so as to generate the target patch that the noise is reduced. A method for motion compensated noise reduction for input images is also provided.
US10282826B2
A method includes acquiring a radiographic image and processing the acquired image to obtain a gradient image. The method then includes generating, from the gradient image, an initial set of pixels exhibiting speckle and removing one or more pixels from the initial set of pixels according to features indicative of image content, forming a mapping of pixels for replacement from the remaining set of pixels. A replacement pixel value is calculated for one or more pixels in the mapping and pixel values from the acquired radiographic image replaced according to the calculated replacement pixel value to form a corrected image. The corrected image can be displayed.
US10282822B2
A digital method for removing optical aberrations from the image is disclosed. The method includes the initial profiling of an optical system and using the obtained information to correct the optical aberrations introduces to the image by the same or identical optical system.
US10282815B2
Environmental map generation techniques and systems are described. A digital image is scaled to achieve a target aspect ratio using a content aware scaling technique. A canvas is generated that is dimensionally larger than the scaled digital image and the scaled digital image is inserted within the canvas thereby resulting in an unfilled portion of the canvas. An initially filled canvas is then generated by filling the unfilled portion using a content aware fill technique based on the inserted digital image. A plurality of polar coordinate canvases is formed by transforming original coordinates of the canvas into polar coordinates. The unfilled portions of the polar coordinate canvases are filled using a content-aware fill technique that is initialized based on the initially filled canvas. An environmental map of the digital image is generated by combining a plurality of original coordinate canvas portions formed from the polar coordinate canvases.
US10282810B2
A rendering engine is described that implements rendering techniques to render 2D illustrations by assigning light values to objects that define an illustration ‘inside out’. Light values may be assigned to a first object and subsequently inherited by objects that are hierarchly related to the first object. The light values assigned to the objects may include a light variable that depends on a relationship between the two or more groups of objects. Various rendering techniques may be employed by the rendering engine to render illustrations that are both customizable and realistic in appearance.
US10282807B2
In tile-based graphics processing systems, a tiling unit determines which tiles of a rendering space a primitive is in, such that the primitives in a tile can be rendered. Rather than performing tiling calculations for each tile in a bounding box for a primitive, tiling tests can be performed for a subset of the tiles. Then the results of the tiling tests for the subset of tiles can be used to determine whether the primitive is in other tiles which are located within a region bounded by two or more of the tiles of the subset. In this way the tiling process can be implemented without performing tiling calculations for all of the tiles in the bounding box for a primitive. Reducing the number of tiling calculations can help to improve the efficiency of the graphics processing system (in terms of speed and power consumption) for rendering a primitive.
US10282799B2
A computer-implemented system for transferring clinical medical data between healthcare institutions. The system includes a first electronic medical record system configured to maintain electronic medical records for a patient at a first healthcare institution and an integrated web browser configured to allow a patient at the first healthcare institution to connect to a web-based portal page of a second electronic medical record system at a second healthcare institution through the first electronic medical record system, wherein the web-based portal page is configured to provide information from the second electronic medical record system to be displayed through the integrated web browser. The system further includes a medical record parser configured to parse the displayed information for storage in the first electronic medical record system.
US10282796B2
An energy storage system includes a battery and an energy storage controller. The battery is configured to store electrical energy purchased from a utility and to discharge the stored electrical energy for use in satisfying a building energy load. The energy storage controller is configured to generate a cost function including multiple demand charges. Each of the demand charges corresponds to a demand charge period and defines a cost based on a maximum amount of the electrical energy purchased from the utility during any time step within the corresponding demand charge period. The controller is configured to modify the cost function by applying a demand charge mask to each of the multiple demand charges. The demand charge masks cause the controller to disregard the electrical energy purchased from the utility during any time steps that occur outside the corresponding demand charge period when calculating a value for the demand charge.
US10282795B2
A streams platform is used. Multiple streams of electricity usage data are received, each from an electrical meter providing periodic updates to electrical usage for devices connected to the electrical meter. Weather information is received corresponding to locations where the electrical meters are. Real-time predictive modeling of electricity demand is performed based on the received multiple streams of electricity usage data and the received weather information, at least by performing: updating a state space model for electrical load curves using the usage data from the streams and the weather, wherein the updating uses current load observations for the multiple streams for a current time period; and creating forecast(s) for the electricity demand. The forecast(s) of the electricity demand are output. Appliance-level predictions may be made and used, and substitution effects and load management functions may be performed.
US10282793B2
Methods of providing services to individual and methods of manufacturing items are described. Data structures to represent priority values for those individuals or items are also described. By ascribing priority values to a set of items, those items can be grouped based on those priority values. Once grouped based on priority values, the items within each group can be manufactured according to group priority as well as according to the characteristics of each item to be manufactured within that group. The same concept applies to providing services to individuals.
US10282787B1
Methods and systems for assessing damage to a property associated with an insurance-related event are provided. According to certain aspects, a smart home controller or insurance provider remote processor may store data received from a plurality of smart devices disposed on or proximate to a property. The stored data may be used to develop a baseline for normal conditions associated with the property. When the insurance-related event is occurring, the smart home controller or insurance provider remote processor may receive a second set of data from the plurality of smart devices. The second set of data may be compared to the baseline to determine a sequence of events associated with the insurance-related event that caused the damage to the property. Subsequently, according to certain aspects, the smart home controller or insurance provider remote server may automatically generate an insurance claim for damage associated with the insurance-related event.
US10282781B2
A data analytics platform system includes a first database including economic forecast, house pricing, unemployment, and interest rate data object structures. A second database includes data object structures associated with attributes of mortgage loans and borrowers. A first module performs projections for predicting a monthly status on performing and modified performing mortgage loans. A second module performs projections of lifetime outcomes for delinquent mortgage loans. A third module performs calculations of mortgage loan level credit losses and timing parameters of loan loss recognition attributes. A fourth module performs calculations of forecasted mortgage loan performance attributes, mortgage loan contract terms, and interest rates to generate mortgage loan level cash flow data analytics. A fifth module summarizes projections of data performance analytics over a forecasted period of time, and creates an electronic summary report of the projections. An electric signal generator, a signal converter, and a display device output the electronic report.
US10282773B2
Devices, systems, and methods include a three-dimensional (3D) scanning element, an electronic data storage configured to store a database including fields for 3D scan data and demographic information, a processor, and a user interface. In an example, the processor obtains 3D scan data of a body part of a subject from the 3D scanning element, analyzes the 3D scan data for incomplete regions, generate a composite 3D image of 3D scan data from the database based on similarities of demographic information, and overlays composite 3D image regions corresponding to incomplete regions on the 3D scan data.
US10282748B2
In some embodiments, a method defines a test group from a population of consumers that have been exposed to a communication associated with a promoted entity. The test group includes a (1) retailer profile, and (2) a first purchase amount associated with the promoted entity. The method also includes receiving purchase information associated with a third party. The purchase information includes (1) a second purchase amount associated with the promoted entity, and (2) a third purchase amount associated with the promoted entity. The method further includes defining a first multiplier based on a relationship between the first purchase amount and the second purchase amount, and defining a second multiplier based on a relationship between the first purchase amount and the third purchase amount. The method additionally includes sending a signal indicative of a combined multiplier based on (1) the first multiplier, and (2) the second multiplier.
US10282743B2
In some embodiments, systems, apparatus and methods are disclosed that utilize customer feedback to obtain store intelligence and automatically respond to the customer without the need to involve a store associate or employee, thereby allowing employees to continue on with other tasks. For example, customers may provide feedback for a particular product not on the shelves and be advised that it is being pulled (if it is on-site, such as in a back room), or offered the opportunity to order the product or advised of an alternate on-site or off-site location where the product can be found. The system, method or apparatus may also identify products the store should add to its assortment of products based on such customer inquiries and/or may take automated actions in response (e.g., generating pick requests, generating orders for products, reporting potential new products to add to offerings, etc.).
US10282734B2
An authentication system configured to identify counterfeit articles. The authentication system configured to capture and scan an optical code engraved on an artifact, decode the optical code to determine a unique code associated with an article, transmitting the unique code to the authentication server and receiving a result of authentication from the authentication server to verify the authenticity of the article being scanned.
US10282732B2
Embodiments include method, systems and computer program products for analysis of customer feedback on an application executing on a distributed computational system. Aspects include receiving feedback from a user of the application, wherein the application includes a plurality of components and wherein at least two of the plurality of components are provided by separate service providers in the distributed computational system. Aspects also include identifying one or more of the plurality of components that the feedback corresponds to and forwarding the feedback to one or more of the plurality of service providers associated with the one or more of the plurality of components identified.
US10282728B2
A method for processing an attempted payment made using a mobile device includes receiving information about the attempted payment, receiving data indicative of a behavior of a user of the mobile device at the time of the attempted payment, computing a likelihood that the attempted payment is fraudulent, based on a comparison of the behavior of the user to an historical behavior pattern of the user, and sending an instruction indicating how to proceed with the attempted payment, based on the likelihood.
US10282720B1
A system that analyzes camera images to track a person from a point where the person obtains an authorization to a different point where the authorization is used. The authorization may be extended in time and space from the point where it was initially obtained. Scenarios enabled by embodiments include automatically opening a locked door or gate for an authorized person and automatically charging items taken by a person to that person's account. Supports automated stores that allow users to enter, take products and exit without explicitly paying. An illustrative application is an automated, unmanned gas station that allows a user to pay at the pump and then enter a locked on-site convenience store or a locked case with products the user can take for automatic purchase. Embodiments may also extend authorization to other people, such as occupants of the same vehicle.
US10282711B2
The disclosed embodiments include computerized systems and methods that generate secured distributed storage ledger structures, such as block-chain-based ledger structures, that facilitate event-based control of tracked assets. In one embodiment, an apparatus associated with a centralized authority of the secured distributed storage ledger may detect an occurrence of a triggering event, and may access and decrypt a set of rules hashed into the secured distributed storage ledger using a confidentially-held master cryptographic key. The apparatus may identify a rule associated with the detected event, and perform one or more operations consistent with the rule and involving at least one of assets tracked within the secured distributed storage ledger or an owner of a portion of the tracked assets.
US10282707B2
A system and method for scheduling a business process including tasks, comprises a calculation unit, a determination unit, and a decision unit. The calculation unit is configured to calculate an estimated processing time required to execute the tasks. The determination unit is configured to calculate an estimated end time of a route including the tasks on the basis of the estimated processing time and schedule of a user to execute the tasks, and determine whether to apply speculative execution to the business process on the basis of the estimated end time. The decision unit is configured to decide to speculatively execute a task out of the tasks in the business process. The decision is made with reference to a remaining period for executing the task. The remaining period is calculated on the basis of a predicted execution timing of each task and a deadline of the business process.