US09912292B2
In a crystal resonator, a resonator element is installed in a package via a first bonding member and a second bonding member, and when viewed from above, a distance between a first bonding center and a second bonding center is set to be L1, and a length of a perpendicular line drawn to a virtual line which connects the first bonding center and the second bonding center from the resonation area center is set to be L2, a relationship expressed by 0
US09912289B2
The present disclosure proposes: a distributor measuring box designed to be installed on a photovoltaic solar module, having a housing with a support section embodied to be supported on the solar module, an encompassing side wall, and a cover, and string line feedthroughs and/or string line connectors, and having a string current measuring module that includes a measuring component and an evaluation unit for measuring the string current in the distributor measuring box; a photovoltaic solar module having a plurality of solar cells, in which a distributor measuring box is mounted to the back of the solar module oriented away from the sun; and a photovoltaic system having a plurality of photovoltaic solar modules, having a plurality of string lines, having a generator junction box, and having at least one inverter for supplying the electrical power produced by the photovoltaic generator.
US09912288B2
A solar junction box for a solar panel having at least one photovoltaic cell and a foil electrically connected to the at least one cell includes a housing having a base and walls defining a cavity. The base has at least one foil opening configured to receive the foil. A protection device is received in the cavity. A terminal is received in the cavity. The terminal has a diode contact terminated to the protection device. The terminal has a foil contact configured to be terminated to the foil. The terminal has a cable contact terminated to an electrical cable. The cable contact has insulation displacement contact (IDC) beams terminated to the electrical cable.
US09912270B2
A motor drive device includes: a drive circuit unit having a plurality pair of switching elements and a plurality pair of free wheel diodes connected in parallel to the plurality pair of switching elements respectively; and a controller that turns on/off the switching elements. The controller performs a synchronous rectification control in which at least one pair of the switching elements is complementarily turned on/off, or performs an asynchronous rectification control in which the synchronous rectification control is not performed. The controller has a variation restriction portion that restricts a variation in current that is caused by a switch from one of the synchronous rectification control and the asynchronous rectification control to the other.
US09912262B2
A positioning arrangement is provided for moving an object that is to be positioned (9) with at least one positioning axis (11), wherein at least two electric motors (6) for moving the object that is to be positioned (9) are assigned to at least one positioning axis (11). Each electric motor (6) has its own separate control circuit (2), wherein the control circuits (2) are designed in each case to receive adjustment requests for a positioning direction. The control circuits (2) are furthermore designed in each case to evaluate the adjustment request and the electric motors (6) are interconnected via a communication interface (13). The adjustment requests and the movement commands to control the electric motors (6) can be exchanged via this communication interface (13).
US09912261B2
Various embodiments include a variable frequency drive motor control apparatus. The apparatus includes a main controller having a first interface. A motor controller is coupled to and controls an electric motor, the motor controller further coupled to the main controller. A network switch is coupled to the main controller, the motor controller, and a remote controller over respective digital connections. The remote controller has a second interface. The network switches data between the first interface, the second interface, and the motor controller. A network coupler is coupled between a variable frequency drive controller and the motor controller.
US09912260B2
A drive signal generating unit generates a drive signal used to alternately deliver a positive current and a negative current to a coil. A driver unit generates the drive current in response to the drive signal generated by the drive signal generating unit and supplies the drive current to the coil. After the drive termination of a linear vibration motor, the drive signal generating unit generates a drive signal whose phase is opposite to the phase of the drive signal generated during the motor running. The driver unit quickens the stop of the linear vibration motor by supplying to the coil the drive current of opposite phase according to the drive signal of opposite phase.
US09912254B2
A power delivery system includes a rotary transformer having a primary winding and a secondary winding and configured to transfer power between stationary coupling elements on a stationary side and rotational coupling elements on a rotational side. The rotational coupling elements share a central axis with the stationary coupling elements, and are adapted to rotate with respect to the stationary coupling elements. The power delivery system includes an isolation transformer that drives the primary winding of the rotary transformer, and a plurality of power inverter stages whose outputs are adapted to be summed and coupled to the rotary transformer. A plurality of output power converters receive transmitted power from the rotary transformer. A plurality of control elements, disposed on the rotating side, are configured to close a feedback loop on desired and actual performance of the output power converters, and to control the power inverter stages.
US09912251B2
Control systems for a multi-level diode-clamped inverter and corresponding methods include a processor and a digital logic circuit forming a hybrid controller. The processor identifies sector and region locations based on a sampled reference voltage vector V* and angle θe*. The processor then selects predefined switching sequences and pre-calculated turn-on time values based on the identified sector and region locations. The digital logic circuit generates PWM switching signals for driving power transistors of a multi-level diode-clamped inverter based on the turn-on time values and the selected switching sequences. The control system takes care of the existing capacitor voltage balancing issues of multi-level diode-clamped inverters while supplying both active and reactive power to an IT load. Using the control system, one can generate a symmetrical PWM signal that fully covers the linear under-modulation region.
US09912247B2
A dc link module for a power circuit includes a first connector for connecting to a first power conversion circuit, a second connector for connecting to a second power conversion circuit, wherein the second power conversion circuit is connected to a load circuit arranged to at least intermittently operate as a power source to the power circuit, at least one dc link capacitors arranged between said first connector and said second connector for processing a voltage signal received at said first connector or said second connector, and at least one voltage compensation circuits arranged between said first connector and said second connector, said one or more voltage compensation circuits arranged to generate a voltage signal to compensate an ac ripple component in a dc voltage signal appearing across the at least one dc link capacitor.
US09912246B2
The invention describes a bleeder circuit (1) realized for use in a dimmer (2) comprising a main AC switch (20) for switching a supply voltage (LINE) to a light non-linear load (L), which bleeder circuit (1) comprises a bleeder load (11) realized to provide operational assistance to main AC switch (20); wherein the bleeder load (11) is enabled on the basis of a switching signal (T20) of the main AC switch (20). The invention further describes a dimmer (2) comprising such a bleeder circuit (1). The invention also describes an electrical appliance comprising a light non-linear load (L) and such a dimmer (2). The invention further describes a method of dimming a light non-linear load (L).
US09912236B2
A switching power supply system includes a switching converter, to convert an input voltage into an output voltage and to generate a switching signal; a feedback circuit, to generate a feedback signal; an error amplifier to generate an error signal; a triangle signal generator to generate a triangle signal; a constant on time control circuit to receive error signal and the triangle signal, and to generate a constant on time control signal to control power switch; in the system. The triangle signal has a DC bias based on either a soft start signal or a second reference signal. The system could perform soft start function and meanwhile keep matching between the error signal and the triangle signal.
US09912222B2
A circuit configuration and system of capacitors for a converter having a filter system, the circuit configuration including a converter, which has an alternating voltage connection, especially for a multiphase input- or output-side alternating voltage source, and a unipolar connection on the input or output side, especially a direct voltage connection, especially for a voltage intermediate circuit, the alternating voltage connection being connected to phase lines, especially to three phase lines, the phase lines having inductances, in particular, characterized in that first capacitances are situated between a phase line and a common star point in each case, it being the case, in particular, that one of the first capacitances is situated between a particular phase line, especially each phase line, and the common star point, it being the case, in particular, that each of the first capacitances is of equal size.
US09912221B2
Multilevel power converters, power cells and methods are presented for selectively bypassing a power stage of a multilevel inverter circuit, in which a single relay or contactor includes first and second normally closed output control contacts coupled between a given power cell switching circuit and the given power cell output, along with a normally open bypass contact coupled across the power stage output, with a local or central controller energizing the coil of the relay or contactor of a given cell to bypass that cell.
US09912218B2
For defining an electric potential of input lines of an inverter with respect to ground, in all current-carrying output lines of the inverter capacitors are arranged and charged to a DC voltage in order to shift the electric potential of the input lines with respect to a reference potential present at the current-carrying output lines of the inverter by this DC voltage.
US09912217B2
A vibration motor is disclosed. The vibration motor includes a housing, a substrate engaging with the housing, a vibration unit received in the housing, an elastic member suspending the vibration unit, and a coil assembly interacting with the vibration unit. The vibration motor further includes a number of dampers located between the vibration unit and the elastic members for being constantly pressed and released.
US09912211B2
A rotary electrical machine incorporating an electronic module that includes a printed circuit mounted with a plurality of surface mounted electronic components and a plurality of pin-through-hole electronic components; the electrical machine includes a dissipator for dispersing the heat generated by the electronic module; the surface mounted electronic components and the pin-through-hole electronic components are mounted between the printed circuit and the dissipator; the electronic module also includes a transferring element, also mounted between the printed circuit and the dissipator, in thermal contact with at least one of the surface mounted electronic components; the transferring element is designed to disperse the heat generated by the surface mounted electronic components towards the dissipator with the aid of a thermally conductive and electrically isolating filler material inserted between the transferring element and the dissipator.
US09912210B2
Systems and methods are provided for cooling an alternator using a fan that is operationally independent of the alternator and a duct system that at least partially surrounds the alternator. Example vehicles include an alternator cooling system that comprises a fan configured to be operationally independent of the alternator and disposed adjacent to an end of the alternator, and a duct system encasing the end of the alternator. The vehicles further include a control module configured to control operation of the fan based on one or more inputs related to operation of the alternator. Example methods include receiving, at a processor, an input related to operation of the alternator; determining, based on the input, that a preset condition has been met, using the processor; and responsive thereto, generating a control signal to adjust an operating speed of the fan.
US09912207B2
A housing for an electrical machine includes an endshield and a cover. The electrical machine has a rotation axis, a rotor assembly including a rotor, and a controller assembly. The rotor assembly includes a bearing assembly. The endshield includes an annular center section including a bore sized to couple to the bearing assembly. The cover is coupled to the endshield. The cover includes a generally axially-extending flange wall formed about a perimeter of the cover, a volute-shaped inner chamber configured to at least partially enclose the rotor coupled to the rotor assembly of the electrical machine, and a cooling channel positioned radially outward from the inner chamber. The cooling channel is configured to at least partially enclose the controller assembly of the electrical machine.
US09912206B2
An electrical motor including a stator, said stator comprising a back iron, a plurality of teeth extending therefrom, and windings wound around said teeth; a rotary body comprising permanent magnets positioned between said stator and said rotary body; said rotary body being coaxially rotatable relative to the stator about a central axis; means for rotating said rotary body about said central axis of rotation relative to said stator, and wherein said back iron of said stator further comprises a first loop of electrical resistive wire extending therein.
US09912202B2
A wireless charger having a support for receiving an electronic device, the support including a base and a retaining element. The retaining element is movable relative to the base for assuming a position depending on the dimensions of the electronic device when it is retained on the support. The charger further includes a wireless energy emitter for wirelessly charging an electronic device retained on the support. The energy emitter is borne by a mechanism mechanically connecting the energy emitter to the base and to the retaining element. The mechanism is laid down so that a displacement of the retaining element relative to the base causes a displacement of the energy emitter relative to the base.
US09912201B2
The systems and methods of detecting a change in object presence in a magnetic field disclosed herein inject a low amplitude signal near the resonant frequency into the coil until the system comes to equilibrium. At this point the feedback is measured. The feedback signal can be measured as at least one of several signals, for example, but not limited to the voltage on the resonant capacitor, the current in the coil, and the voltage between the resonant capacitor and the coil. A change in the steady state response indicates a change in device presence.
US09912199B2
The present invention may provide various electric receiver arrangements which may be used to provide wireless power transmission using suitable power transmission techniques such as pocket-forming. In some embodiments, receivers may include at least one antenna connected to at least one rectifier and one power converter. In other embodiments, receivers including a plurality of antennas, a plurality of rectifiers or a plurality of power converters may be provided. In addition, receivers may include communications components which may allow for communication to various electronic equipment including transmitters, phones, computers and others. Lastly, various implementation arrangements may be provided for including receivers in electronic devices.
US09912187B2
A carbon material and a magnetic material are incorporated at a magnetic shield included at a wireless power antenna. The magnetic shield shapes a magnetic flux field proximate to the magnetic shield. The carbon material conducts heat at the magnetic shield.
US09912173B2
Embodiments of the invention relate to a method and system for transferring power wirelessly to electronic devices. The system can utilize magnetic coupling between two coils at close proximity to transfer sufficient power to charge an electronic device. Embodiments of the invention pertain to an array of spiral coils that can be used to transmit power for transfer to receiver coils. Potential applications of this technology include charging consumer electronic devices (cell phones, laptops, PDAs, etc), developing hermetically sealed devices for extreme environments, and less invasive transcutaneous energy transfer (TET) systems. Various embodiments of the subject system can be referred to as PowerPad system. Embodiments can incorporate one or more of the following: planar inductors, PCB transformers, and very high frequency power supplies. Embodiments of the invention also pertain to planar inductors having characteristics that allow the production of even magnetic field, as well as systems that incorporate such planar inductors.
US09912168B2
A wireless power transfer system is disclosed. A wireless power transmitting apparatus for wirelessly transmitting power to a wireless power receiving apparatus includes a transmitting coil for transmitting the power, a hall sensor for sensing a change width of flux density caused by the wireless power receiving apparatus, and a controller for comparing the sensed change width of the flux density with a predetermined critical value to determine whether to transmit the power, wherein magnets provided in the wireless power transmitting apparatus and the wireless power receiving apparatus are disposed such that polarities of the magnets are different from each other at opposite faces thereof. In the wireless power transfer system, the magnets having polarities are disposed in the wireless power transmitting apparatus and the wireless power receiving apparatus.
US09912167B2
A system is provided for inductive power transmission. The system includes a primary unit having a primary coil and a secondary unit having a secondary coil. The primary coil generates a magnetic transmission field in a transmission area between the primary unit and the secondary unit. The system includes a metal detector, and the metal detector is suitable for the detection of a metallic object situated in the transmission area.
US09912162B2
A method for controlling a power consumption of a group of a plurality of wind turbines, in particular of a wind park. The wind turbines are prepared for feeding electrical energy into an electrical supply network and an energy supply is offered to the wind turbines for consumption in a recurring cycle, in predetermined order successively, and subject to a total park energy supply available to the wind turbines for consumption, and the respective wind turbine reserves this or a smaller energy supply as a reference power, and subsequent wind turbines in the cycle are provided with, at most, the energy supply available to the wind park, reduced by the reference energy supply already reserved, as energy supply.
US09912156B2
The switching apparatus and the method are for varying the impedance of a phase line of a segment of an electrical power line. The phase line includes n conductors electrically insulated from each other and short-circuited together at two ends of the segment. The apparatus comprises a controllable interrupter connected in series for each conductor; a parameter detector; a first controller for controlling the interrupters; and a disabling unit for disabling the interrupters. The disabling unit comprises n controllable switches associated with the interrupters, position detectors for detecting which of the interrupters is closed, and a second controller having a command output to command the controllable switches and ensure that, at all operating times, at least one of the interrupters is closed and disabled.
US09912154B2
An electrical power-supplying device for supplying electrical power to a group of electrical appliances located in an environment. The electrical power supplying device includes a power supply cord for plugging into a standard power receptacle by way of a power supply plug, and supplying AC electrical power to the device. The device includes a housing base portion having a central aperture providing access to a 3D interior volume bounded by a side wall extending circumferentially about the 3D interior volume and having a capacity for holding a plurality of power adapter modules and/or power adapter blocks associated with said group of electrical appliances located in the environment. The device further includes a central power-receptacle assembly having a peninsula-like housing structure supported generally within the central portion of the housing base portion and extending above the bottom support surface within the 3D interior volume, and towards a portion of the wall of the housing base portion, and supporting a plurality of internally disposed alternating current (AC) electrical receptacles and one or more electronic circuits, including an AC-to-DC power conversion circuit, which are operably connected to the power supply cord.
US09912151B2
A direct current power system includes a common direct current (DC) bus configured to supply power to a plurality of loads. A plurality of alternating current (AC) to DC converter bridges supply DC power to the common CD bus. Each of the AC to DC converter bridges is connected to the common DC bus by at least one split DC link. The at least one split DC link includes a small capacitor connected across output terminals of the respective AC to DC converter bridge and at least one diode coupled between two terminals of the small capacitor and the large capacitor in a way to block an instantaneous current flow from the common DC bus to the respective AC to DC converter bridge in case of a fault of the AC to DC converter bridge.
US09912150B2
In a power control system which connects power from the power storage device to a power grid and supplies power to a load, the power from the power storage device is connected to the load and the power grid via a DC/DC converter, a smoothing capacitor, and a DC/AC converter. By a first power control unit for controlling flow power of the power grid to be a power command value, and by a second power control unit for suppressing reverse flow power, an output power command for the DC/AC converter is generated, an output power command for the DC/DC converter is generated so that voltage of the smoothing capacitor becomes target voltage, and the output power command is corrected so as to suppress voltage variation in the smoothing capacitor.
US09912147B2
An interface for cutting off the power supply for any fault current Id≦300 milliamperes such that: Id≧IPE+k·Ih where IPE represents the current returning to the power source via the protective conductor connecting the exposed conductive parts to earth and Ih (≦10 or 30 milliamperes) represents the current returning to the power source by ways other than via the protective conductor or via an active conductor. Current Ih is therefore likely to travel through a person. In this way, the interface protects people and property against ground insulation faults and against certain direct contacts independently of the earth of the exposed conductive parts and of external conditions. It also protects people in the event of a failure in the protection of an area using the same earth in case of a fault.
US09912144B2
Delta-sigma modulators do not handle overload well, and often become unstable if the input goes beyond the full-scale range of the modulator. To provide overload protection, an improved technique embeds an overload detector in the delta sigma modulator. When an overload condition is detected, coefficient(s) of the delta sigma modulator is adjusted to accommodate for the overloaded input. The improved technique advantageously allows the delta sigma modulator to handle overload gracefully without reset, and offers greater dynamic range at reduced resolution. Furthermore, the coefficient(s) of the delta sigma modulator can be adjusted in such a way to ensure the noise transfer function is not affected.
US09912142B2
One embodiment of a disclosed cable protection device connected between the positive and negative wires of the cable that provides an efficient method of protection from overheating of the device due to changes in temperatures with minimal power dissipation. The cable protection device includes a temperature monitoring device that continuously senses the temperature of the cable and device to check for overheating. A controller connected to the temperature monitor sends out an alarm message and a control signal to either an actuator circuit or a crowbar function circuit. The actuator circuit can send out current pulses to the adapter indicating the adapter to lower its current limit, so that the device can still keep charging and is not over heated. The crowbar function circuit causes the adapter to turn off power to the cable in order to provide burning of the device or connector due to overheating.
US09912135B2
Rigid non-conducting safety covers for the conductive components on an electrical utility pole are disclosed. The safety covers prevent arcing or current flowing to a user working on a utility pole. The safety covers extend over portions of the utility pole, cross arm and bracket mounting the cross arm to the utility pole.
US09912131B2
The invention relates to a cable stripping tool (1). A cable stripping unit (5) is built with two cable stripping jaws (6, 7). The cable stripping jaws (6, 7) are pivoted towards each other in a pivot plane (9) during a cutting stroke. During a subsequent cable stripping stroke the cutting jaws (6, 7) are moved along a cable stripping axis (15). A mounting axis (58, 59) has an orientation vertical to the pivot plane (9). A cutting element (10, 11) is detachably mounted along the mounting axis (58, 59) with the cable stripping jaw (6, 7). Outside from an exchange position the cutting element (10, 11) is blocked against the removal along the mounting axis (58, 59). The exchange position is induced by the drive (16) of the cable stripping tool (1). In the exchange position the cutting element (10, 11) is freed with respect to a movement along the mounting axis (58, 59) so that demounting of the cutting element (10, 11) and mounting of a new cutting element (10, 11) is possible.
US09912130B1
Embodiments disclosed herein include devices and methods for gripping electrical components. The electrical device gripping tool may include a rotating handle, a cam assembly, and a body. The rotating handle may be attached to the assembly and the cam assembly may include a cam holder that fits over the cam to connect the rotating handle to the body. Furthermore, the body may include a first body half and a second body half that are each separately coupled to the cam such that the first body half and the second body half slide towards each other and slide away from each other with respect to a rotation of the rotating handle. In addition, shields are optionally attached to the first and second body half such that they assist in the removal of the electrical device without its terminals making contact with the containment box.
US09912129B1
An apparatus for the movement of a barrel pack containing spooled wire or cable. The apparatus comprising a frame, a handle attached to the frame, a plurality of wheels rotatably attached to the frame, securing structures attached to the frame, the securing structures securing the barrel pack to the frame and a footage counting assembly attached to the handle. The footage counting assembly counts the amount of footage of wire or cable passing through the footage counting assembly.
US09912117B2
A semiconductor laser device which comprises a laser diode chip (100) that emits laser light; a 45° reflective mirror (400) that changes laser light traveling horizontally to a package bottom into laser light traveling perpendicular to the package bottom. The 45° reflective mirror (400) is a partial reflective mirror which has a partial reflection/partial transmission characteristic. An optical feedback-partial reflective mirror (500) is disposed along a path of light passing vertically through the 45° reflective mirror (400). The optical feedback-partial reflective mirror (500) supplies some of the laser light traveling through the 45° reflective mirror (400) back to the 45° reflective mirror 400 by reflecting a first portion of the laser light while transmitting a remaining portion of the laser light.
US09912115B2
The invention relates to methods of producing a cap substrate, to methods of producing a packaged radiation-emitting device at the wafer level, and to a radiation-emitting device. By producing a cap substrate, providing a device substrate in the form of a wafer including a multitude of radiation-emitting devices, arranging the substrates one above the other such that the substrates are bonded along an intermediate bonding frame, and dicing the packaged radiation-emitting devices, improved packaged radiation-emitting devices are provided which are advantageously arranged within a cavity free from organics and can be examined, still at the wafer level, in terms of their functionalities in a simplified manner prior to being diced.
US09912113B2
A system for implementing an electrical rotary joint in a large-diameter system using relatively small-diameter capsule slip rings is described herein. The system includes a system rotor that rotates about a system axis of rotation, and a system stator that is stationary with respect to the system rotor. The system also includes at least one conductive contact channel disposed on one of the system rotor and the system stator. The system further includes at least one capsule slip ring (CSR) coupled to the other of the system rotor and the system stator. The at least one CSR has a conductive annular element coupled thereto, the conductive annular element in mechanical contact with the at least one conductive contact channel such that the at least one CSR forms an electrical rotary joint between the system rotor and the system stator.
US09912107B2
Plug assembly including a pluggable connector having a mating end and a trailing end and a central axis extending therebetween. The pluggable connector includes internal electronics that generate thermal energy within the pluggable connector. The mating end is configured to engage a data connector. The pluggable connector also includes a thermal interface region that is coupled to the pluggable connector. The thermal interface region includes a series of transfer plates that extend parallel to each other and to the central axis. The transfer plates define a series of plate-receiving slots extending parallel to the central axis. The thermal interface region transfers the thermal energy generated by the internal electronics through the transfer plates.
US09912105B2
A coaxial cable connector for coupling an end of a coaxial cable to a terminal is disclosed. The connector has a coupler adapted to couple the connector to a terminal, a body assembled with the coupler and a post assembled with the coupler and the body. The post is adapted to receive an end of a coaxial cable. The post has an integral contacting portion that is monolithic with at least a portion of the post. When assembled the coupler and post provide at least one circuitous path resulting in RF shielding such that RF signals external to the coaxial cable connector are attenuated, such that the integrity of an electrical signal transmitted through coaxial cable connector is maintained regardless of the tightness of the coupling of the connector to the terminal.
US09912104B2
A dielectric barrier for use with a lightning arrestor connector comprises a plurality of physically connected cells defining a hollow, tubular side wall, with each cell including a frame formed from dielectric material and an aperture that creates a void within the frame. The dielectric barrier is configured to be positioned between an inner conductor and an outer conductor and provides a low resistance path from one conductor to the other conductor when the voltage between the two conductors exceeds a threshold value.
US09912096B2
A terminated electric wire includes an electric wire that includes a core wire including a metal having an ionization tendency larger than that of copper and being exposed from an end portion of the electric wire, and a terminal that includes copper or a copper alloy and is connected to the exposed core wire. A surface treating layer includes a surface treating agent that is in liquid form or in paste form and whose molecular structure contains an affinity group having an affinity for the terminal and a hydrophobic group having hydrophobicity, and is formed on a surface of the terminal. As a result, the electrolytic corrosion resistance of the terminated electric wire is improved.
US09912095B2
The invention relates to an environmentally sealed plug-in connector housing formed from a base body (2) having a fastening flange (10) molded thereon. The fastening flange (10) is associated with a sealing element (20) that is compressed in a sealing manner between the fastening flange (10) and an assembly surface (3). In order to ensure the sealing of fastening bores (11) provided in the fastening flange (10), sealing sleeves (21) are molded onto the sealing element (20), which sealing sleeves extend into the fastening bores (11) and at least completely pass through the latter. A fastening screw inserted into a fastening bore (11) can in this way seal with its screw head the fastening bore (11) by means of the sealing sleeve (21) that is compressed by the screw head.
US09912094B2
A device has both a debris deflector and a built in CPA assist. The debris deflector is a (sufficiently) large shield that covers the CPA slot and the CPA in the pre-staged arrangement. The device further includes a CPA assist that is configured to engage the pre-staged CPA (now covered by the debris deflector) so that it can allow the manufacturer to engage the now protected CPA when desired.
US09912092B2
An ergonomically friendly terminal position assurance device for use with an electrical connector. The device includes a terminal position assurance device for use with an electrical connector. The device includes a terminal engaging section and an engagement section. The terminal engaging section has a first end and an oppositely facing second end. The engagement section extends from the first end and has a bearing surface, the bearing surface has a surface area which is wider than the width of the terminal engaging section. The engagement section extends at least part of the length of the terminal engagement section. The bearing surface of the engagement section is configured to allow an assembler to push the terminal position assurance device during assembly of the electrical connector in an ergonomically friendly manner.
US09912082B2
A electric wire connection structure includes a flat cable including a plurality of linear conductors and an insulator covering the linear conductors; a plurality of busbars for electrically connecting electrode terminals provided on two or more of battery cells stretched in a given direction among the plurality of battery cells stacked in the direction and included in a battery module, the electrode terminals being lined up in the direction; and connecting members provided for each combination of the linear conductors and the busbars to include a connecting member main body and a pressure welding blade portion connected to the connecting member main body, a pressure welding groove being formed on the pressure welding blade portion.
US09912081B2
A cover assembly for an electrical connector at the end of a sheathed cable containing several insulated wires. An insulation piercing clip couples light bulb leads to the wires. A translucent housing encloses the light bulb, said insulation piercing clip, the entire section of unsheathed insulated wires, a portion of the electrical connector and a portion of the sheathed cable. The cover assembly is illuminated by the light bulb when power flows through the electrical connector and may be color coded to indicate connector function.
US09912080B2
The present invention relates to an antenna able to cover two opposite angular sectors comprising: first and second excited elements (10,11) each able to radiate a signal beam at a predetermined frequency, at least two reflector elements (20,21,22,23), called first and second reflector elements, able to reflect said beams in opposite directions. According to the invention, said first and second excited elements (10,11) and said at least two reflector elements (20,21,22,23) are aligned, said reflector elements being disposed between said first and second excited elements. At least two reflector elements from among said at least two reflector elements (20,21,22,23) are connected together electrically by a first transmission line (30) of predetermined length so that the reflector elements connected together participate jointly in reflecting the beams in the two opposite directions.
US09912076B2
A low band radiator for a dual band antenna having a low band and a high band. The radiator includes a dipole arm having a center conductor and at least one RF choke including at least one partial box section closed at one end and open at the other end and having two opposing sides, a bottom and an open top. The closed end is shorted to the center conductor and the partial box section is quasi-coaxial with center conductor. The choke is resonant near the frequency of the high band of the antenna. The dipole arm may include a plurality of the partial box sections with a gap between each section to form a plurality of RF chokes. The dipole arm may be fabricated as a single die cast metal piece or as a plastic injection molded piece plated with conductive material.
US09912069B2
A communication system that reduces the mutual influence of antennas operating in similar or different frequency bands. The communication system includes a first and a second antenna operating in a first and a second frequency band, respectively, and placed in close proximity to each other. The first antenna is covered by a conformal mantle metasurface with anti-phase scattering properties thereby cancelling the scattering in the second frequency band. The conformal mantle metasurface consists of a patterned metallic sheet comprising slits both in an azimuthal and a vertical direction to reduce both vertical and horizontal polarization scattering. When the first antenna is a low-band dipole antenna and when the second antenna is a high-band dipole antenna, the conformal mantle metasurface reduces the low-band blockage without disrupting the performance of both antennas in terms of radiation pattern and impedance matching.
US09912061B2
A millimeter-wave (MMW) communication system may include an antenna array structure operating within a MMW band, having both a first antenna coupling point and a second antenna coupling point, whereby the first and the second location of the antenna coupling points are within a coplanar surface on which the antenna array structure is formed. The system may further include a first MMW transmitter that couples a first data modulated MMW signal to the first antenna coupling point and a second MMW transmitter that couples a second data modulated MMW signal to the second antenna coupling point. Coupling the first data modulated MMW signal to the first antenna coupling point generates a first MMW radio signal transmitted at a first propagation direction and coupling the second data modulated MMW signal to the second antenna coupling point generates a second MMW radio signal transmitted at a second propagation direction.
US09912058B2
According to one embodiment, a hybrid antenna is described comprising a plurality of windings wherein each winding comprises a loop antenna portion arranged in a plane and a ferrite antenna portion arranged at least partially outside of the plane.
US09912055B2
A method and apparatus for improving a performance of an antenna system. An influence network is generated for an array of elements in the antenna system using a reconfiguration algorithm. The influence network indicates an influence of an undesired event occurring at any element in the array of elements on a remaining portion of the array of elements given a current state of the array of elements. A relative ranking of vulnerability is created for elements in the array of elements based on the influence network. The reconfiguration algorithm is modified to take into account the relative ranking of vulnerability to form a modified reconfiguration algorithm. The antenna system using the modified reconfiguration algorithm to compensate for undesired events improves the performance of the antenna system.
US09912052B2
System for positioning a reflector includes a base (112), yoke (104) and a reflector in the form of a lens mirror assembly (10). A motor (120) is mounted and remains substantially stationary with respect to rotation about a first axis while the yoke rotates about the first axis. A connecting rod (152) actuated for movement by the motor is mechanically coupled to the reflector so that movement of the connecting rod in relation to the yoke imparts rotation to the reflector about the second axis when the reflector is supported by the yoke. A mechanical drive system couples an output shaft of the motor to the connecting rod. The mechanical drive system is arranged so that it varies an angular position of the reflector at a rate which is linearly related to the rotation of the output shaft.
US09912051B2
A vertical axis driver drives a vertical axis for azimuth angle tracking. A horizontal axis driver drives a horizontal axis for elevation angle tracking. A cross horizontal axis driver drives a cross horizontal axis to which an antenna is attached, that is rotatable around an axis orthogonal to the horizontal axis. An arithmetic processing controller generates a drive signal of a constant azimuth angle the vertical axis when a maximum elevation angle of the antenna is greater than or equal to a set angle in a path of the target object in a single time of continuous tracking. When the maximum elevation angle of the antenna is less than the set angle in the path of the target object in the single time of continuous tracking, the controller issues a drive command of an azimuth angle direction to the vertical axis.
US09912047B2
An antenna cover has a plate with a top surface and outer perimetric edge, and a housing affixed to or integrally formed with the plate. The housing extends downwardly from an underside of the plate. The housing is positioned within the outer perimetric edge. The housing is adapted to receive an antenna therein. The plate is formed of a radio-frequency transmissive material. The top surface of the plate taper slightly upwardly from the outer perimetric edge. The housing has a generally rectangular configuration with an open bottom. The plate is formed of a material such as an acetyl copolymer, and acetyl homopolymer and, or a polyester-reinforced thermoplastic.
US09912046B2
A roof antenna for a vehicle is provided having an antenna unit that receives radio waves, an antenna cover that covers the antenna unit, and an annular pad interposed between the antenna cover and the roof, wherein the pad has an antenna cover reception unit formed from an elastic structure formed at a portion, of the pad, opposing a lower end of the antenna cover, and that is pressed by the lower end of the antenna cover to elastically deform in a pressed direction, and a lip unit formed on an outer circumferential end of the antenna cover reception unit, that covers an outer circumference of the lower end of the antenna cover, and that is in contact with the roof.
US09912045B2
An antenna includes a first body having an array of resonators; a spacer adjacent to the first body, and a second body adjacent to the spacer such that the spacer is between the first and second bodies. The first body can be configured as an artificial metasurface ground plane and the second body can be configured as a monopole.
US09912043B1
An antenna system for a large appliance is disclosed herein. The antenna system comprises a large appliance having a front surface and a rear surface, a first antenna mounted on the rear surface, a second antenna mounted on the rear surface, a combiner in communication with the first antenna and the second antenna, a radio, a processor, and a wireless access point. The combiner selects the strongest signal of the first antenna and the second antenna to receive a wireless signal from the wireless access point.
US09912042B2
A wearable wireless device is disclosed. In one embodiment the wearable wireless device includes a circuit board, a housing body housing the circuit board, the housing body having a front side and a back side, the back side configured to be closer to the user when worn than the front side, a first antenna element electrically connected to the circuit board and located at the front side of the housing body and a second antenna element electrically connected to the circuit board and located at the front side of the housing body.
US09912039B2
Wireless communication device includes a first device section. The first device section has a first edge. The wireless communication device also includes a second device section that has a second edge. The wireless communication device also includes a floating hinge that joins the first and second edges and permits the first and second device sections to move between a closed state and an operating state. The floating hinge and the first device section are rotatable about a first axis of rotation that extends through the floating hinge. The floating hinge and the second device section are rotatable about a second axis of rotation that extends through the floating hinge. The floating hinge includes a slot antenna that is communicatively coupled to a processor and is configured to at least one of transmit wireless signals or receive wireless signals.
US09912038B2
Disclosed is a pit lid antenna assembly including an antenna having an upper section and a lower section; and an antenna casing having a casing wall having an inner surface, the inner surface defining a first antenna slot, the first antenna slot sized to accept a portion of the lower section of the antenna.
US09912036B2
An approach for determining remote terminal antenna alignment in a satellite communications system is provided. A point in time for an expected conjunction of an a remote terminal antenna, a satellite in communication with the remote terminal and the Sun is determined based on predetermined positional data. An interference level imposed by the Sun on communication signals between the antenna and the satellite is measured at a number of respective points in time. A one of the points in time is determined when the interference is at a peak level. Then information regarding alignment of the antenna with respect to the satellite is determined, wherein the determination of the antenna alignment information is based on a comparison between the one point in time of the peak interference level and the expected point in time of the conjunction of the antenna, the satellite and the Sun.
US09912031B2
Disclosed are various embodiments for transmitting energy conveyed in the form of a guided surface-waveguide mode along the surface of a terrestrial medium by exciting a polyphase waveguide probe.
US09912021B2
A thermal management system for a high density power source is disclosed. The system includes a housing with an interior divided into first and second compartments. The first compartment is configured and adapted to house at least one electrical battery and the second compartment defines a coolant reservoir. A fluid release member connects the first and second compartments. Upon the first compartment reaching a temperature in excess of a predetermined limit, the fluid release member releases coolant form the second compartment into the first compartment to cool the at least one battery within the first compartment.
US09912014B2
Embodiments of the invention generally relate to solid state battery structures, such as Li-ion batteries, methods of fabrication and tools for fabricating the batteries. One or more electrodes and the separator may each be cast using a green tape approach wherein a mixture of active material, conductive additive, polymer binder and/or solid electrolyte are molded or extruded in a roll to roll or segmented sheet/disk process to make green tape, green disks or green sheets. A method of fabricating a solid state battery may include: preparing and/or providing a green sheet of positive electrode material; preparing and/or providing a green sheet of separator material; laminating together the green sheet of positive electrode material and the green sheet of separator material to form a laminated green stack; and sintering the laminated green stack to form a sintered stack comprising a positive electrode and a separator.
US09912007B2
A secondary battery includes: a cathode; an anode; and an electrolyte layer containing a nonaqueous electrolytic solution and a polymer compound, wherein the polymer compound contains a block copolymer, and the block copolymer contains vinylidene fluoride, hexafluoro propylene, and one or more of monomethyl maleate, trifluoroethylene, and chlorotrifluoroethylene as polymerization units.
US09912002B2
The present invention relates to: an ion exchange membrane containing, in a channel, an inorganic particle, substituted with an organic compound including SO4− group; and a method for manufacturing the ion exchange membrane. The ion exchange membrane according to the present invention can provide excellent physical properties while also maintaining ion conductivity.
US09911998B2
A device for decreasing hydrogen concentration of a fuel cell system is installed in an exhaust system of a fuel cell system so as to discharge exhaust gas including hydrogen and air from fuel cells to the atmosphere through an exhaust line. The device includes: a catalyst diluter that includes catalysts for diluting hydrogen in the exhaust gas by generating a catalytic reaction, the catalyst diluter being connected to the exhaust line; and an air diluter that is disposed outside the catalyst diluter and guides external air to a gas exit side of the catalyst diluter, in which the catalyst diluter may include a valve unit that opens and closes an external air channel of the air diluter in accordance with flow pressure of the exhaust gas.
US09911996B2
Disclosed is an apparatus for controlling a fuel concentration of a liquid fuel cell apparatus by voltage amplitude control-based feed-back control without using a concentration sensor, which saves power consumed by the fuel cell apparatus and lowers a price of the fuel cell apparatus by using the fuel cell in a simple and small design without using a concentration sensor.
US09911992B2
A membrane electrode assembly and fuel cell having such assembly. The membrane electrode assembly has a polymer electrolyte membrane, two catalytic electrodes in contact with the polymer electrolyte membrane on both sides, namely an anode and a cathode, and two gas diffusion layers directly or indirectly adjoining the electrodes, namely an anode-side gas diffusion layer and a cathode-side gas diffusion layer. At least one of the gas diffusion layers may optionally feature a microporous layer facing the polymer electrolyte membrane. The sequence of layers is anode-side gas diffusion layer, anode-side microporous layer, anode, polymer electrolyte membrane, cathode, cathode-side microporous layer, cathode-side gas diffusion layer. A relative hydrophobicity of at least two of these components and/or a hydrophobicity gradient within at least one of these components, and a relative pore structure having pore size and/or porosity of at least two of these components and/or a gradient within the pore structure of at least one of these components, is designed in such a way that it promotes the transport of water via the polymer electrolyte membrane, preferably from the cathode side to the anode side.
US09911989B2
A method of operating a fuel cell system includes providing a fuel inlet stream into a fuel cell stack, operating the fuel cell stack to generate electricity and a hydrogen containing fuel exhaust stream having a temperature above 200 C, lowering a temperature of the fuel exhaust stream to 200 C or less, separating the fuel exhaust stream into a first separated fuel exhaust stream and a second separated fuel exhaust stream, and recycling the first separated fuel exhaust stream into the fuel inlet stream.
US09911982B2
A method for making a fibrous layer for fuel cell applications includes a step of combining a perfluorocyclobutyl-containing resin with a water soluble carrier resin to form a resinous mixture. The resinous mixture is then shaped to form a shaped resinous mixture. The shaped resinous mixture includes perfluorocyclobutyl-containing structures within the carrier resin. The shaped resinous mixture is contacted (i.e., washed) with water to separate the perfluorocyclobutyl-containing structures from the carrier resin. Optional protogenic groups and then a catalyst are added to the perfluorocyclobutyl-containing structures.
US09911981B1
An air-cathode battery includes a porous cathode current collector with an air interface, an ionic liquid electrolyte disposed in pores of the porous cathode current collector; a metal anode, and a separator in contact with the ionic liquid electrolyte and coupled between the porous cathode current collector and the metal anode. The porous cathode current collector is an ionogel formed from a silica sol-gel or a carbonized resorcinol-formaldehyde aerogel and the pores are functionalized with a thiol group-containing species that is functionalized with one or more catalytic nanoparticles or the pores are electroplated with catalytic metal.
US09911974B2
A composite anode for a lithium-ion battery is manufactured from silicon nanoparticles having diameters mostly under 10 nm; providing an oxide layer on the silicon nanoparticles; dispersing the silicon nanoparticles in a polar liquid; providing a graphene oxide suspension; mixing the polar liquid containing the dispersed silicone nanoparticles with the graphene oxide suspension to obtain a composite mixture; probe-sonicating the mixture for a predetermined time; filtering the composite mixture to obtain a solid composite; drying the composite; and reducing the composite to obtain graphene and silicon.
US09911967B2
An electric or hybrid vehicle including an arrangement of mechanisms introducing an extinguishing fluid into a battery pack, especially a drive battery, of the vehicle. A first port is placed in a wall of the pack and provides access to an interior of the pack, the first port including a partial or total blocking mechanism being removable or meltable under effect of temperature. A second port is placed in an element of a body of the vehicle facing the first port. Extinguishing fluid may be introduced into the pack through two ports once the blocking mechanism of the first port has been removed or melted.
US09911963B2
The present invention discloses an electricity storing/discharging device with multiple-layer package structure having electrode plate pair with multiple-sided electric conductive terminals converted into single input/output electric conductive interface, which is applied in a multiple-layer package structure with specific single-sided input/output and having electrode plate pair with multiple-sided input/output terminals, thereby allowing the electrode plate pair with multiple-sided electric conductive terminals to be structured as an input/output electric conductive interface through single-sided input/output electric conductive terminals having positive and negative polarities for the purpose of transferring electric energy to the exterior.
US09911954B2
An anti-explosion package of soft-packed secondary battery, including: upper film, lower film, packaging area and anti-explosion area, an outer edge of upper film and lower film are sealed to form hollow cavity for accommodating naked battery core; packaging area is provided on at least one outer edge of upper film and lower film, anti-explosion area is arranged in packaging area, packaging areas of upper film and lower film are adhered together except location of anti-explosion area, so that upper film and lower film are sealed at this side, anti-explosion area includes opening area and transition area successively arranged in a direction from an edge of packaging area close to hollow cavity to an edge away from hollow cavity; portion of the upper film and lower film at opening area is not adhered, portion located at transition area is adhered with intensity less than transition area.
US09911946B2
According to various embodiments, an optoelectronic component may be provided, the optoelectronic component including: an electrode structure disposed at least one of over and in a carrier; and a grating structure disposed over the electrode structure, the grating structure including at least a first region and a second region, wherein the first region of the grating structure includes amorphous silicon; and wherein the second region of the grating structure includes a material having a refractive index different from the refractive index of the amorphous silicon.
US09911943B2
An organic light-emitting display device is provided. The device can include a display area having an organic light-emitting element on a lower substrate; a bezel area surrounding the display area; a transparent encapsulation unit having first and second encapsulation layers, and a first particle cover; and a first buffer layer. The first encapsulation layer can cover the display area and the bezel area. The first particle cover layer can cover the display area and a portion of the bezel area adjacent to the display area. The first buffer layer, apart from the first particle cover layer, can cover another portion of the bezel area. The second encapsulation layer, which covers the first particle cover layer and the first buffer layer, contacts the first encapsulation layer at a contact surface between the first particle cover layer and the first buffer layer.
US09911935B2
Techniques for forming a transparent conducting oxide (TCO) top contact using a low temperature process are provided. In one aspect of the invention, a method of forming a TCO on a substrate is provided. The method includes the steps of: generating a source gas of the TCO using e-beam evaporation; generating atomic oxygen using RF plasma; and contacting the substrate with the TCO source gas and the atomic oxygen under conditions sufficient to form the TCO on the substrate. A photovoltaic device is also provided which includes a bottom cell; and a perovskite-based top cell on the kesterite-based bottom cell. The perovskite-based top cell includes a top electrode formed from a TCO.
US09911925B2
A carbazole-based compound represented by Formula 1A and 1B: wherein in Formulae 1A and 1B, ring A, groups L1, L2, L11, and L12, substituents R1 to R9 and R11 to R18, and variables a1 to a4 and b1 to b3 are the same as defined in the specification.
US09911924B2
A material for an organic optoelectronic device including a first compound represented by Chemical Formula A-1 and a second compound represented by Chemical Formula B-1: wherein, variables R1-R8, Ar1, Ar2, L1, L2, X2, n1, and n2 are described in the specification.
US09911921B2
Provided is an organic light-emitting device capable of outputting light with high efficiency and high luminance. The organic light-emitting device includes an anode, a cathode, an emission layer placed between the anode and the cathode, and an organic compound layer placed between the anode and the emission layer, in which the organic compound layer contains the following compound A and compound B: [Compound A] an organic compound free of a nitrogen atom and a metal atom, the compound having SP2 carbon atoms and SP3 carbon atoms, and having a ratio of the number of the SP3 carbon atoms to the number of the SP2 carbon atoms of 40% or more; and [Compound B] a compound having a tertiary amine structure.
US09911914B1
Methods of forming the MRAM generally include forming an array of MTJ having sub-lithographic dimensions. The array can be formed by providing a substrate including a MTJ material stack including a reference ferromagnetic layer, a tunnel barrier layer, and a free ferromagnetic layer on an opposite side of the tunnel barrier layer. A hardmask layer is deposited onto the MTJ material stack. A first sidewall spacer is formed on the hardmask layer in a first direction. A second sidewall spacer is formed over the first sidewall in a second direction, wherein the first direction is orthogonal to the second direction. The second sidewall spacer intersects the first sidewall spacer. The first sidewall spacer is processed using the second sidewall spacer as mask to form a pattern of oxide pillars having sub-lithographic dimensions. The pattern of oxide pillars are transferred into the MTJ stack to form the array.
US09911913B1
A method of manufacturing a piezoelectric microactuator having a wrap-around electrode includes forming a piezoelectric element having a large central electrode on a top face, and having a wrap-around electrode that includes the bottom face, two opposing ends of the device, and two opposing end portions of the top face. The device is then cut through the middle, separating the device into two separate piezoelectric microactuators each having a wrap-around electrode.
US09911912B2
A piezoelectric composite for use in an ultrasonic transducer and a method of forming the same is provided. The composite has a piezoelectric ceramic component and a hydrophobic polymer component arranged to form a 1-3, 2-2, or 3-3 composite type. In one embodiment, the hydrophobic polymer is selected to polymerize at a moderate temperature.
US09911910B2
In one embodiment a superconductor tape includes a substrate comprising a plurality of layers, an oriented superconductor layer disposed on the substrate, and an alloy coating disposed upon the superconductor layer, the alloy coating comprising one or more metallic layers in which at least one metallic layer comprises a metal alloy.
US09911904B2
A composite board is provided with a board and a covering member. The board includes a base made of ceramics, first wiring provided on an upper surface of the base, and second wiring provided on a lower surface of the base and electrically connected to the first wiring. The covering member covers the base such that the first wiring and the second wiring are exposed.
US09911898B2
Disclosed is an ultraviolet light-emitting device. The light-emitting device includes: an n-type contact layer including a GaN layer; a p-type contact layer including an AlGaN or AlInGaN layer; and an active region of multiple quantum well structure positioned between the n-type contact layer and the p-type contact layer. In addition, the active region of multiple quantum well structure includes a GaN or InGaN layer with a thickness less than 2 nm, radiating an ultraviolet ray with a peak wavelength of 340 nm to 360 nm.
US09911895B2
A semiconductor layer including a plurality of inhomogeneous regions is provided. Each inhomogeneous region has one or more attributes that differ from a material forming the semiconductor layer. The inhomogeneous regions can include one or more regions configured based on radiation having a target wavelength. These regions can include transparent and/or reflective regions. The inhomogeneous regions also can include one or more regions having a higher conductivity than a conductivity of the radiation-based regions, e.g., at least ten percent higher.
US09911893B2
A method for manufacturing a polycrystalline silicon ingot includes steps of: a) melting a silicon material in a container disposed in a thermal field to form a molten silicon; b) controlling the thermal field to provide heat to the molten silicon from above the container and to solidify a portion of the molten silicon contacting a base part and at least a portion of a wall part proximate to the base part of the container to form a solid silicon crystalline isolation layer; and c) controlling the thermal field to continuously provide heat to the rest of the molten silicon from above the container and to solidify the rest of the molten silicon gradually from a bottom to a top of the rest of the molten silicon to form a polycrystalline silicon ingot.
US09911892B2
A method for the low-temperature production of radial electronic junction semiconductor nanostructures on a substrate, includes: a) forming on the substrate, metal aggregates capable of electronically doping a first semiconductor material; b) growing, in the vapor phase, doped semiconductor nanowires in the presence of one or more non-dopant precursor gases of the first semiconductor material, the substrate being heated to a temperature at which the metal aggregates are in the liquid phase, the growth of the doped semiconductor nanowires in the vapor phase being catalyzed by the metal aggregates; c) rendering the residual metal aggregates inactive; and d) the chemical vapor deposition, in the presence of one or more precursor gases and a dopant gas, of at least one thin film of a second semiconductor material so as to form at least one radial electronic junction nanostructure between the nanowire and the at least one doped thin film.
US09911888B2
A method for forming a photovoltaic device includes providing a substrate. A layer is deposited to form one or more layers of a photovoltaic stack on the substrate. The depositing of the amorphous layer includes performing a high power flash deposition for depositing a first portion of the layer. A low power deposition is performed for depositing a second portion of the layer.
US09911884B2
A device for adaptable wavelength conversion and a device for energy conversion are described. The device for adaptable wavelength conversion comprises at least one layer comprising a wavelength converting material and arranged to receive and re-emit a light beam. the device is further arranged to manipulate the at least one layer to operate in a closed state, in which a surface of the at least one layer is substantially covered with the wavelength converting material and to operate in an open state, in which the surface of the at least one layer is substantially uncovered with the wavelength converting material. The device for adaptable wavelength conversion can be applied in combination with a solar cell or photovoltaic cell thereby enabling the solar cell to receive radiation having a suitable spectrum under varying lighting conditions.
US09911883B2
There is provided an electrical-energy harvester for a display panel, the harvester comprising: a transparent and flexible lower electrode; a transparent and flexible piezoelectric layer on the lower electrode; reflective particles dispersed in the piezoelectric layer for reflecting light beams incident into the piezoelectric layer; a transparent and flexible upper electrode on the piezoelectric layer, wherein the upper and lower electrodes are opposite to each other; and at least one solar cell disposed on at least one lateral side of the piezoelectric layer, wherein at least one solar cell is configured to receive the light beam reflected from the reflective particles and, thus, to generate electrical energy.
US09911880B2
A PV module framing and coupling system which enables the attachment of PV modules to a roof or other mounting surface without requiring the use of separate structural support members which attach directly to and span between multiple PV modules in a formed PV array and a cable management system that holds, directs, organizes, and otherwise manages cables, wires, cord, and similar components of and relating to a PV array.
US09911878B2
In an aspect of the disclosure, a process for forming nanostructuring on a silicon-containing substrate is provided. The process comprises (a) performing metal-assisted chemical etching on the substrate, (b) performing a clean, including partial or total removal of the metal used to assist the chemical etch, and (c) performing an isotropic or substantially isotropic chemical etch subsequently to the metal-assisted chemical etch of step (a). In an alternative aspect of the disclosure, the process comprises (a) performing metal-assisted chemical etching on the substrate, (b) cleaning the substrate, including removal of some or all of the assisting metal, and (c) performing a chemical etch which results in regularized openings in the silicon substrate.
US09911870B2
A solid-state imaging element including: a sensor substrate in which a photoelectric conversion section is arranged and formed; a circuit substrate in which a circuit for driving the photoelectric conversion section is formed, the circuit substrate being laminated to the sensor substrate; a sensor side electrode drawn out to a surface of the sensor substrate on a side of the circuit substrate and formed as one of a projection electrode and a depression electrode; and a circuit side electrode drawn out to a surface of the circuit substrate on a side of the sensor substrate, formed as one of the depression electrode and the projection electrode, and joined to the sensor side electrode in a state of the circuit side electrode and the sensor side electrode being fitted together.
US09911869B2
A diode comprising a semiconductor body delimited by a front surface and including: a first semiconductor region having a first type of conductivity, facing at least in part the front surface; and a second semiconductor region having a second type of conductivity, the second semiconductor region facing at least in part the front surface and surrounding, at a distance, at least part of the first semiconductor region. The diode further includes: a trench, which extends in the semiconductor body starting from the front surface, for surrounding at least part of the second semiconductor region; and a lateral insulation region, which is arranged within the trench, is formed by dielectric material and contacts at least in part the second semiconductor region.
US09911865B2
An object is to provide favorable interface characteristics of a thin film transistor including an oxide semiconductor layer without mixing of an impurity such as moisture. Another object is to provide a semiconductor device including a thin film transistor having excellent electric characteristics and high reliability, and a method by which a semiconductor device can be manufactured with high productivity. A main point is to perform oxygen radical treatment on a surface of a gate insulating layer. Accordingly, there is a peak of the oxygen concentration at an interface between the gate insulating layer and a semiconductor layer, and the oxygen concentration of the gate insulating layer has a concentration gradient. The oxygen concentration is increased toward the interface between the gate insulating layer and the semiconductor layer.
US09911864B2
Defects in an oxide semiconductor film are reduced in a semiconductor device including the oxide semiconductor film. The electrical characteristics of a semiconductor device including an oxide semiconductor film are improved. The reliability of a semiconductor device including an oxide semiconductor film is improved. A semiconductor device including an oxide semiconductor layer; a metal oxide layer in contact with the oxide semiconductor layer, the metal oxide layer including an In-M oxide (M is Ti, Ga, Y, Zr, La, Ce, Nd, or Hf); and a conductive layer in contact with the metal oxide layer, the conductive layer including copper, aluminum, gold, or silver is provided. In the semiconductor device, y/(x+y) is greater than or equal to 0.75 and less than 1 where the atomic ratio of In to M included in the metal oxide layer is In:M=x:y.
US09911858B2
A miniaturized semiconductor device including a transistor in which a channel formation region is formed using an oxide semiconductor film and variation in electric characteristics due to a short-channel effect is suppressed is provided. In addition, a semiconductor device whose on-state current is improved is provided. A semiconductor device is provided with an oxide semiconductor film including a pair of second oxide semiconductor regions which are amorphous regions and a first oxide semiconductor region located between the pair of second oxide semiconductor regions, a gate insulating film, and a gate electrode provided over the first oxide semiconductor region with the gate insulating film interposed therebetween. One or more kinds of elements selected from Group 15 elements such as nitrogen, phosphorus, and arsenic are added to the second oxide semiconductor regions.
US09911857B2
A metal oxide semiconductor device including an active layer of metal oxide, a layer of gate dielectric, and a layer of low trap density material. The layer of low trap density material is sandwiched between the active layer of metal oxide and the layer of gate dielectric. The layer of low trap density material has a major surface parallel and in contact with a major surface of the active layer of metal oxide to form a low trap density interface with the active layer of metal oxide. A second layer of low trap density material can optionally be placed in contact with the opposed major surface of the active layer of metal oxide so that a low trap density interface is formed with both surfaces of the active layer of metal oxide.
US09911854B2
A transistor device comprising: source and drain conductors connected by a semiconductor channel provided by a layer of semiconductor material formed over the source and drain conductors; and a gate conductor capacitively coupled to the semiconductor channel via a gate dielectric; wherein at least one of the source and drain conductors comprises a multilayer structure in at least one region thereof, the multilayer structure comprising a lower layer and an upper layer, the material of the lower layer being better than the material of the upper layer at injecting charge into the semiconductor material; and the material of the upper layer exhibiting better electrical conductivity than the material of the lower layer.
US09911844B2
The semiconductor device includes: a semiconductor layer in which a trench is formed having a side surface and a bottom surface; a second conductivity-type layer formed on the semiconductor layer on the side surface and the bottom surface of the trench; a first conductivity-type layer formed on the semiconductor layer so as to contact the second conductivity-type layer; a first electrode electrically connected to the first conductivity-type layer; a second electrode embedded in the trench and electrically connected to the second conductivity-type layer; and a barrier-forming layer which is arranged between the second electrode and the side surface of the trench and which, between said barrier-forming layer and the second conductivity-type layer, forms a potential barrier higher than the potential barrier between the second conductivity-type layer and the second electrode.
US09911840B2
A transistor device includes a doped semiconductor substrate having one or more electrically insulated gate electrodes formed in trenches in the substrate. One or more body regions are formed in a top portion of the substrate proximate each gate trench. One or more source regions are formed in a self-aligned fashion in a top portion of the body regions proximate each gate trench. One or more thick insulator portions are formed over the gate electrodes on a top surface of the substrate with spaces between adjacent thick insulator portions. A metal is formed on top of the substrate over the thick insulator portions. The metal forms a self-aligned contact to the substrate through the spaces between the thick insulator portions. An integrated diode is formed under the self-aligned contact.
US09911835B2
Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
US09911828B2
Provided are methods of fabricating a semiconductor device including a field effect transistor. Such methods may include sequentially forming lower and intermediate mold layers on a substrate, forming first upper mold patterns and first spacers on the first and second regions, respectively, of the substrate, etching the intermediate mold layer using the first upper mold patterns and the first spacers as an etch mask to form first and second intermediate mold patterns, respectively, forming second spacers to cover sidewalls of the first and second intermediate mold patterns, etching the lower mold layer using the second spacers as an etch mask to form lower mold patterns, and etching the substrate using the lower mold patterns as an etch mask to form active patterns.
US09911824B2
A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a fin structure formed over a substrate and a gate structure formed across the fin structure. The semiconductor structure further includes a bottom spacer formed on a lower part of a sidewall of the gate structure and an upper spacer formed on an upper part of the sidewall of the gate structure. In addition, the upper spacer includes an air gap formed in a dielectric material.
US09911821B2
A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate. The semiconductor device structure includes a metal gate electrode structure over the semiconductor substrate. The semiconductor device structure includes an insulating layer over the semiconductor substrate and surrounding the metal gate electrode structure. The semiconductor device structure includes a first metal nitride layer over a first top surface of the metal gate electrode structure and in direct contact with the metal gate electrode structure. The first metal nitride layer includes a nitride material of the metal gate electrode structure.
US09911819B2
A semiconductor structure includes a first GAA transistor and a second GAA transistor. The first GAA transistor includes: a first top OD region, a first bottom OD region, and a first nanowire. A second GAA transistor includes: a second top OD region, a second bottom OD region, and a second nanowire. The first top OD region, the first bottom OD region, and the first nanowire are symmetrical with the second top OD region, the second bottom OD region, and the second nanowire respectively, the first GAA transistor is arranged to provide a first current to flow from the first top OD region to the first bottom OD region, and the second GAA transistor is arranged to provide a second current to flow from the second top OD region to the second bottom OD region.
US09911815B2
Planar and non-planar field effect transistors with extended-drain structures, and techniques to fabricate such structures. In an embodiment, a field plate electrode is disposed over an extended-drain, with a field plate dielectric there between. The field plate is disposed farther from the transistor drain than the transistor gate. In a further embodiment, an extended-drain transistor has source and drain contact metal at approximately twice a pitch, of the field plate and the source and/or drain contact metal. In a further embodiment, an isolation dielectric distinct from the gate dielectric is disposed between the extended-drain and the field plate. In a further embodiment, the field plate may be directly coupled to one or more of the transistor gate electrode or a dummy gate electrode without requiring upper level interconnection. In an embodiment, a deep well implant may be disposed between a lightly-doped extended-drain and a substrate to reduce drain-body junction capacitance and improve transistor performance.
US09911812B2
According to an exemplary embodiment, a method of forming a fin structure is provided. The method includes the following operations: etching a first dielectric layer to form at least one recess and a first core portion of a fin core; form an oxide layer as a shallow trench isolation layer in the recess; etching back the oxide layer to expose a portion of the fin core; and forming a fin shell to cover a sidewall of the exposed portion of the fin core.
US09911807B2
Transistor structures having channel regions comprising alternating layers of compressively and tensilely strained epitaxial materials are provided. The alternating epitaxial layers can form channel regions in single and multigate transistor structures. In alternate embodiments, one of the two alternating layers is selectively etched away to form nanoribbons or nanowires of the remaining material. The resulting strained nanoribbons or nanowires form the channel regions of transistor structures. Also provided are computing devices comprising transistors comprising channel regions comprised of alternating compressively and tensilely strained epitaxial layers and computing devices comprising transistors comprising channel regions comprised of strained nanoribbons or nanowires.
US09911792B2
A display unit includes a plurality of light emitting devices, each of the light emitting devices including a function layer including at least an organic layer is sandwiched between a first electrode and a second electrode, and which have a resonator structure for resonating light by using a space between the first electrode and the second electrode as a resonant section and extracting the light through the second electrode are arranged on a substrate, wherein in the respective light emitting devices, the organic layer is made of an identical layer, and a distance of the resonant section between the first electrode and the second electrode is set to a plurality of different values.
US09911776B2
A solid-state imaging apparatus includes: a solid-state imaging device photoelectrically converting light taken by a lens; and a light shielding member shielding part of light incident on the solid-state imaging device from the lens, wherein an angle made between an edge surface of the light shielding member and an optical axis direction of the lens is larger than an incident angle of light to be incident on an edge portion of the light shielding member.
US09911773B2
An image sensor includes photodiodes arranged in semiconductor material. Each of the photodiodes is identically sized and is fabricated in the semiconductor material with identical semiconductor processing conditions. The photodiodes are organized into virtual large-small groupings including a first photodiode and a second photodiode. Microlenses are disposed over the semiconductor material with each of microlenses disposed over a respective photodiode. A first microlens is disposed over the first photodiode, and a second microlens is disposed over the second photodiode. A mask is disposed between the first microlens and the first photodiode. The mask includes an opening through which a first portion of incident light directed through the first microlens is directed to the first photodiode. A second portion of the incident light directed through the first microlens is blocked by the mask from reaching the first photodiode. There is no mask between the second microlens and the second photodiode.
US09911768B2
The present disclosure relates to a solid state imaging device in which, in phase difference pixels that do not include a light blocking layer for forming a phase difference, the phase difference detection characteristics can be made uniform regardless of the image height. Provided is a solid state imaging device including a pixel array unit in which a plurality of pixels are two-dimensionally arranged in a matrix configuration. Part of the pixels in the pixel array unit include a first photoelectric conversion element and a second photoelectric conversion element configured to receive and photoelectrically convert incident light. A center position of a light receiving characteristic distribution of the first photoelectric conversion element and a center position of a light receiving characteristic distribution of the second photoelectric conversion element are configured so as to be the same between a central portion and a peripheral portion of the pixel array unit.
US09911763B2
A thin film transistor array substrate comprises: a substrate; a driving thin film transistor including an active layer, a gate electrode, a source electrode, and a drain electrode; a first capacitor including a first electrode connected to the gate electrode, and a second electrode disposed at a layer different from a layer at which the first electrode is disposed and at least partially overlapping the first electrode; a first conductive layer disposed at a layer that is the same as the layer of the second electrode of the first capacitor; a second conductive layer disposed at a layer different from the layer at which the first conductive layer is disposed; and a bridge electrode disposed at a layer that is different from the first and second conductive layers, and contacting the first and second conductive layers so that the first and second conductive layers are electrically connected to each other.
US09911761B2
A thin-film transistor (TFT) array substrate and organic light-emitting diode (OLED) display are disclosed. In one aspect, the TFT array substrate includes a driving TFT including a driving gate electrode, a switching TFT including a switching gate electrode and spaced apart from the driving TFT, and a storage capacitor including a first electrode electrically connected to the driving gate electrode and a second electrode formed over and insulated from the first electrode. The TFT array substrate also includes a capacitor insulating film formed between the first and second electrodes and an interlayer insulating film covering at least part of the driving TFT, at least part of the switching TFTs, and the capacitor insulating film, wherein the switching gate electrode and the second electrode are formed of the same material.
US09911757B2
Provided is a novel semiconductor device. The semiconductor device comprises a first transistor and a second transistor. The first transistor comprises a first gate electrode; a first insulating film over the first gate electrode; a first oxide semiconductor film over the first insulating film; a first source electrode and a first drain electrode over the first oxide semiconductor film; a second insulating film over the first oxide semiconductor film, the first source electrode, and the first drain electrode; and a second gate electrode over the second insulating film. The second transistor comprises a first drain electrode; the second insulating film over the second drain electrode; a second oxide semiconductor film over the second insulating film; a second source electrode and a second drain electrode over the second oxide semiconductor film; a third insulating film over the second oxide semiconductor film, the second source electrode, and the second drain electrode; and a third gate electrode over the third insulating film. The first oxide semiconductor film partly overlaps with the second oxide semiconductor film.
US09911750B2
Semiconductor memory devices may include a semiconductor substrate, a first stack disposed on the semiconductor substrate and a second stack disposed on the first stack. The first stack may include a plurality of first word lines with a plurality of first line pads stacked in a stair form, and the second stack may include a plurality of second word lines with a plurality of second line pads stacked in a stair form. The second stack may be shifted on the first stack such that sides of the plurality of first word line pads are exposed.
US09911749B2
According to one embodiment, a semiconductor memory device includes a substrate; a stacked body provided on the substrate and including a plurality of electrode layers; a semiconductor film; a charge storage film; an interconnect layer provided in the stacked body, the interconnect layer; a first contact portion; a first metal layer; and a second metal layer. The interconnect layer includes: a first portion including silicon; and a second portion provided on the first portion and including metal. The first metal layer is provided on the first contact portion. The second metal layer is provided on the first metal layer, and electrically connected to the interconnect layer.
US09911748B2
An alternating stack of insulating layers and sacrificial material layers are formed over a substrate. Memory stack structures are formed through the alternating stack. A backside trench is formed and the sacrificial material layers are replaced with electrically conductive layers. After formation of an insulating spacer in the trench, an epitaxial pedestal structure is grown from a semiconductor portion underlying the backside trench. A source region is formed by introducing dopants into the epitaxial pedestal structure and an underlying semiconductor portion during and/or after epitaxial growth. Alternatively, the backside trench can be formed concurrently with formation of memory openings. An epitaxial pedestal structure can be formed concurrently with formation of epitaxial channel portions at the bottom of each memory opening. After formation and subsequent removal of a dummy trench fill structure in the backside trench, a source region is formed by introducing dopants into the epitaxial pedestal structure.
US09911739B2
Closely spaced III-V compound semiconductor fins and germanium-containing semiconductor fins are provided by utilizing mandrel structures for III-V compound semiconductor material epitaxial growth and subsequent fin formation. Mandrel structures are formed on a semiconductor material stack that includes an uppermost layer of a relaxed germanium-containing material layer. A hard mask portion is formed on a pFET device region of the semiconductor material stack, and then recessed regions are provided in the relaxed germanium-containing material layer of the material stack semiconductor and in an nFET device region. An III-V compound semiconductor material plug is then formed in each recessed region. First sacrificial spacers are formed adjacent the sidewalls of each mandrel structures, and then each mandrel structure is removed. III-V compound semiconductor fins and germanium-containing semiconductor fins are then formed in the different device regions utilizing each first sacrificial spacer as an etch mask.
US09911724B2
In an embodiment, a semiconductor structure includes a multi-chip package system (MCPS). The MCPS includes one or more dies, a molding compound extending along sidewalls of the one or more dies, and a redistribution layer (RDL) over the one or more dies and the molding compound. The semiconductor structure also includes at least one sensor coupled to the RDL, with the RDL interposed between the at least one sensor and the one or more dies. The semiconductor structure further includes a substrate having conductive features on a first side of the substrate. The conductive features are coupled to the RDL. The substrate has a cavity extending from the first side of the substrate to a second side of the substrate opposite the first side, and the at least one sensor is disposed in the cavity.
US09911717B2
A microelectronic assembly includes a first microelectronic package having a substrate with first and second opposed surfaces and substrate contacts thereon. The first package further includes first and second microelectronic elements, each having element contacts electrically connected with the substrate contacts and being spaced apart from one another on the first surface so as to provide an interconnect area of the first surface between the first and second microelectronic elements. A plurality of package terminals at the second surface are electrically interconnected with the substrate contacts for connecting the package with a component external thereto. A plurality of stack terminals are exposed at the first surface in the interconnect area for connecting the package with a component overlying the first surface of the substrate. The assembly further includes a second microelectronic package overlying the first microelectronic package and having terminals joined to the stack terminals of the first microelectronic package.
US09911716B2
A lidded or lidless flip-chip package includes two or more polygon shaped dies. The polygon dies may be interconnected to a substrate or to an interposer interconnected to a substrate. The interposer may be similarly shaped with respect to the polygon die(s). For the lidless or lidded package, the package may include underfill under the polygon dies surrounding associated interconnects. For the lidded package, the package may also include thermal interface materials, seal bands, and a lid. The polygon die package reduces shear stress between the polygon die/interposer and associated underfill as compared to square or rectangular shaped die/interposer of the same area. The polygon dies further maximize the utilization of a wafer from upon which the polygon dies are fabricated. The multi polygon die package may allow for a significant reduction of the polygon die to polygon die relative to the spacing and may reduce signal interconnect time.
US09911711B2
A method forming an interconnect structure includes depositing a first solder bump on a chip; depositing a second solder bump on a laminate, the second solder bump including a nickel copper colloid surrounded by a nickel or copper shell and suspended in a tin-based solder; aligning the chip with the laminate; performing a first reflow process to join the chip to the laminate; depositing an underfill material around the first solder bump and the second solder bump; and performing a second reflow process at a temperature that is lower than the first reflow process to convert the first solder bump and the second solder bump to an all intermetallic interconnect; wherein depositing the underfill material is performed before or after performing the second reflow process.
US09911710B2
Co-planarity adjustment systems and methods, gantries capable of applying high force without imposing moment loads to their bearings, systems and methods for achieving rapid heating and cooling and efficient slidable seal systems capable of sealing a chamber and injecting one or more fluids into the chamber as well as actively recovering portions of such fluid which have migrated into the seal itself are disclosed in the context of thermo-compression bonding systems, apparatuses and methods, although many alternative uses will be apparent to those of skill in the art.
US09911700B2
A structure consisting of at least one die embedded in a polymer matrix and surrounded by the matrix, and further consisting of at least one through via through the polymer matrix around perimeter of the die, wherein typically the at least one via has both ends exposed and where the die is surrounded by a frame of a first polymer matrix and the at least one through via passes through the frame; the die is positioned with terminals on a lower surface such that the lower surface of the chip is coplanar with a lower surface of the frame, the frame is thicker than the chip, and metal is directly attached to and covers at least part of the upper surface of the chip.
US09911694B2
Embodiments of the invention describe low capacitance interconnect structures for semiconductor devices and methods for manufacturing such devices. According to an embodiment of the invention, a low capacitance interconnect structure comprises an interlayer dielectric (ILD). First and second interconnect lines are disposed in the ILD in an alternating pattern. The top surfaces of the first interconnect lines may be recessed below the top surfaces of the second interconnect lines. Increases in the recess of the first interconnect lines decreases the line-to-line capacitance between neighboring interconnects. Further embodiments include utilizing different dielectric materials as etching caps above the first and second interconnect lines. The different materials may have a high selectivity over each other during an etching process. Accordingly, the alignment budget for contacts to individual interconnect lines is increased.
US09911691B2
An interconnection structure includes a first dielectric layer, at least one first conductor, and an etch stop layer. The first conductor is disposed partially in the first dielectric layer and has a portion protruding from the first dielectric layer. The etch stop layer is disposed on the first dielectric layer and covers the protruding portion of the first conductor. The etch stop layer has a cap portion on a top surface of the protruding portion of the first conductor and a spacer portion on at least one sidewall of the protruding portion of the first conductor, and the spacer portion is thicker than the cap portion.
US09911690B2
A structure having fully aligned via connecting metal lines on different Mx levels. The structure may include a first metal line and a second metal line in a first ILD, a cap covering the first ILD, the second metal line and a portion of the first metal line, a second ILD on the cap, and a via that electrically connects the first metal line to a third metal line, wherein the third metal line is above the first metal line and runs perpendicular to the first metal line, the via is fully aligned to the first metal line and the third metal line, and the via electrically connects the first metal line to the third metal line.
US09911689B2
Techniques are disclosed for forming a through-body-via (TBV) isolated coaxial capacitor in a semiconductor die. In some embodiments, a cylindrical capacitor provided using the disclosed techniques may include, for example, a conductive TBV surrounded by a dielectric material and an outer conductor plate. The TBV and outer plate can be formed, for example, so as to be self-aligned with one another in a coaxial arrangement, in accordance with some embodiments. The disclosed capacitor may extend through the body of a host die such that its terminals are accessible on the upper and/or lower surfaces thereof. Thus, in some cases, the host die can be electrically connected with another die to provide a die stack or other three-dimensional integrated circuit (3D IC), in accordance with some embodiments. In some instances, the disclosed capacitor can be utilized, for example, to provide integrated capacitance in a switched-capacitor voltage regulator (SCVR).
US09911685B2
In one embodiment, a method for forming a package substrate includes selectively removing portions of a lead frame to form cavities and filling the cavities with a resin layer to define an adhesion pad and a land structure. Top portions of the lead frame are selectively removed to isolate the adhesion pad and the land structure from each other, to expose a top surface of the resin layer, and to form at least one land having a part with a relatively greater size than the size of a respective lower part.
US09911682B2
A method of forming an on-chip heat sink includes forming a device on a substrate. The method also includes forming a plurality of insulator layers over the device. The method further includes forming a heat sink in at least one of the plurality of insulator layers and proximate to the device. The heat sink includes a reservoir of phase change material having a melting point temperature that is less than an upper limit of a design operating temperature of the chip.
US09911677B2
A method for manufacturing an element chip includes a protection film etching step of removing a part of the protection film which is stacked on the dividing region and the protection film which is stacked on the element region through etching the protection film anisotropically by exposing the substrate to first plasma and remaining the protection film for covering an end surface of the element region. Furthermore, the method for manufacturing an element chip includes an isotropic etching step of etching the dividing region isotropically by exposing the substrate to second plasma and a plasma dicing step of dividing the substrate to a plurality of element chips including the element region by exposing the substrate to third plasma in a state where the second main surface is supported by a supporting member.
US09911666B2
There is provided an apparatus and method for inspecting a semiconductor package. The apparatus includes at least one 3D camera positioned at a first angle relative to a normal axis of the semiconductor package; and a light source configured to provide illumination for the at least one 3D camera, the light source being directed at the semiconductor package. The method includes casting a shadow of a bonded wire onto the semiconductor package; obtaining a 3D image of the semiconductor package; determining a distance S of the shadow and the bonded wire in the image; and obtaining a wire loop height H of the bonded wire.
US09911660B2
A method for forming nanowire semiconductor devices includes a) providing a substrate including an oxide layer defining vias; and b) depositing nanowires in the vias. The nanowires are made of a material selected from a group consisting of germanium or silicon germanium. The method further includes c) selectively etching back the oxide layer relative to the nanowires to expose upper portions of the nanowires; and d) doping the exposed upper portions of the nanowires using a dopant species.
US09911659B2
Semiconductor devices and methods of fabricating the same are provided. The semiconductor devices may include gate electrodes on a substrate. A longitudinal direction of each of the gate electrodes may extend in a first direction, and ones of the gate electrodes may be arranged in the first direction. The semiconductor devices may also include first and second gate spacers extending in the first direction and on respective sidewalls of the ones of the gate electrodes. The first and second gate spacers may be spaced apart from each other in a second direction that is different from the first direction. The semiconductor devices may further include gate separation patterns, and ones of the gate separation patterns may be between two among the ones of the gate electrodes adjacent to each other in the first direction and between the first and second gate spacers.
US09911642B2
According to this disclosure, a method of manufacturing an electronic device is provided, which includes exposing a top surface of a first electrode of a first electronic component to organic acid, irradiating the top surface of the first electrode exposed to the organic acid with ultraviolet light, and bonding the first electrode and a second electrode of a second electronic component by heating and pressing the first electrode and the second electrode each other.
US09911635B2
Provided is a substrate processing apparatus including a substrate container transfer device configured to transfer a substrate container accommodating a substrate and purge an inside of the substrate container; a purge gas supply unit installed at the substrate container transfer device and configured to supply a purge gas into the substrate container; a substrate container standby unit configured to accommodate the substrate container; a contact preventing unit installed at the substrate container standby unit and configured to prevent a contact between the purge gas supply unit and the substrate container standby unit when the substrate container is transferred to the substrate container standby unit by the substrate container transfer device; and a control unit configured to control the substrate container transfer device and the purge gas supply unit.
US09911632B2
According to an aspect herein, there is provided a method of decorating multiple parts, the method includes: loading a plurality of parts onto a pallet; registering location of each of the plurality of parts in relation to the pallet; registering location of each of the plurality of parts with each of a plurality of templates; decorating the plurality of parts using the plurality of templates; and inspecting the decorated parts to monitor for defects. According to another aspect herein, there is provided a method of decorating a part, the method includes: positioning a part for decoration; starting a decoration process for the part; and adjusting one or more parameters of the decoration process during the decoration process based on predetermined characteristics of the part or the decoration to provide for enhanced print coverage or quality.
US09911618B2
Embodiments of the present invention disclose a low temperature poly-silicon thin film transistor and a method of fabricating the same, an array substrate, and a display device. The low temperature poly-silicon thin film transistor comprises an active layer, a source and a drain, wherein the active layer comprises a source contact region, a drain contact region, and a channel region located between the source contact region and the drain contact region, the source is provided above and connected to the source contact region, the drain being provided above and connected to the drain contact region, and thicknesses of the source contact region and the drain contact region are both larger than that of the channel region.
US09911614B2
One embodiment of the present invention one embodiment of the present invention is a method for electrofilling a metal or alloy inside at least one opening surrounded by a field on a front surface of a substrate, wherein at least one surface inside the at least one opening includes an exposed metallic surface, said method including steps of: (a) immersing the substrate in an activation or wetting solution; (b) applying ultrasonic or megasonic vibrations to the substrate; and, after commencing applying ultrasonic or megasonic vibrations to the substrate, (c) applying high pressure jets of an electrolyte to the substrate, said electrolyte includes metallic ions of said metal or alloy; and (d) applying an electroplating current to the substrate to electroplate said metal or alloy inside the at least one opening.
US09911611B2
A method of fabricating a semiconductor device includes forming a hard mask (HM) mandrel along a first direction over a material layer, forming a first spacer along a sidewall of the HM mandrel, forming a second spacer along a sidewall of the first spacer and forming a patterned photoresist layer having a first line opening over the HM mandrel, the first spacer and the second spacer. First portions of the HM mandrel, the first spacer and the second spacer are exposed within the first line opening. The method also includes removing the first portion of the first spacer through the first line opening to expose a first portion of the material layer and etching the exposed first portion of the material layer to form a first opening in the material layer by using the exposed first portions of the HM mandrel and the second spacer as a sub-etch-mask.
US09911608B2
A method of forming patterns includes the steps of providing a substrate on which a target layer and a hard mask layer are formed; forming a plurality of first resist patterns on the hard mask layer; performing a tilt-angle ion implant process to form a first doped area and a second doped area in the hard mask layer between adjacent first resist patterns; removing the first resist patterns; coating a directed self-assembly (DSA) material layer onto the hard mask layer; performing a self-assembling process of the DSA material layer to form repeatedly arranged block copolymer patterns in the DSA material layer; removing undesired portions from the DSA material layer to form second patterns on the hard mask layer; transferring the second patterns to the hard mask layer to form third patterns; and etching the target layer through the third patterns.
US09911603B2
After forming spacers over a hard mask layer using a sidewall image transfer process, a neutral material layer is formed on the portions of the hard mask layer that are not covered by the spacers. The spacers and the neutral material layer guide the self-assembly of a block copolymer material. The microphase separation of the block copolymer material provides a lamella structure of alternating domains of the block copolymer material.
US09911602B2
A method and structure for integrating gallium nitride into a semiconductor substrate. The method may also include means for isolating the gallium nitride from the semiconductor substrate.
US09911591B2
Methods of depositing a film selectively onto a first substrate surface relative to a second substrate surface. Methods include soaking a substrate surface comprising hydroxyl-terminations with a silylamine to form silyl ether-terminations and depositing a film onto a surface other than the silyl ether-terminated surface.
US09911588B1
A method of quantitative mass analysis of precursor species of different mass-to-charge (m/z) ratios from a single or the same ion injection event is disclosed. A plurality of precursor ion species having different respective m/z ratios are introduced into a mass spectrometer at the same time. The precursor ion species are isolated. A first subset of the isolated precursor ions having a first m/z ratio is fragmented and analyzed. A second subset of the isolated precursor ions having a second m/z ratio is fragmented and analyzed. A first mass spectrum is generated for the fragment ions of the first subset of precursor ions, and a second mass spectrum is generated for the fragment ions of the second subset of precursor ions.
US09911574B2
Provided among other things are a scanning electron microscope, scanning transmission electron microscope, focused ion beam microscope, ion beam micromachining device, or scanning probe nanofabrication device, wherein the microscope or device is configured to move a substrate and a scanning modality relative to one another with an enclosed sinusoidal trajectory, and methods of operation.
US09911567B2
A disconnect switch is disclosed with an integrated thermal breaker that can be disposed between a source of power and a circuit to be protected. The disconnect switch can comprise a housing, a first terminal coupled to a power source and a second terminal coupled to a load. The first terminal and the second terminal can be partially included in the housing. The disconnect switch comprises a bi-metal thermal conductive element made from at least two metal sheets with different thermal expansion coefficients and having a concave shape that engages the first and second terminals. Upon occurrence of an overload condition, heat flowing through the bi-metal thermal conductive element causes the concave shape to retract to a convex shape and disengage the bi-metal thermal conductive element from the first and the second terminals.
US09911563B2
A MEMS switch device including: a substrate layer; an insulating layer formed over the substrate layer; and a MEMS switch module having a plurality of contacts formed on the surface of the insulating layer, wherein the insulating layer includes a number of conductive pathways formed within the insulating layer, the conductive pathways being configured to interconnect selected contacts of the MEMS switch module.
US09911555B2
The click mechanism comprises a spring 50 made of a plate material and disposed on a rotatable plate 40 that rotates integrally with a rotationally-manipulated shaft 10 of an electric part; two cylindrical click pieces 60 disposed on an outer perimeter of the rotatable plate 40 in positions forming an angle of 180° with respect to each other so as to retractably protrude from the positions at different heights on the outer perimeter in an axial direction; and projections and depressions 32 and 33 formed on an inner perimeter of a housing 30 in a circumferential direction, in two upper and lower tiers in the axial direction. The projections and depressions 32 and 33 in the two upper and lower tiers are staggered and the two click pieces 60 are biased by the spring 50 to be in resilient contact with the projections and depressions 32 and 33.
US09911554B2
System and methods for providing a keyframe module for a input device are disclosed. In an embodiment, the input device includes a keyframe having a key opening, and a key disposed within the key opening. The key includes a keycap having a bottom surface, a plurality of tabs that extend laterally from the bottom surface of the keycap, and a protrusion extending from the bottom surface of the keycap. A compressible dome structure is disposed underneath the protrusion, and a plate is coupled to the keyframe and disposed underneath the compressible dome structure. A plurality of openings is disposed within the plate, where a location of the plurality of openings corresponds to a location of the plurality of tabs such that one or more of the plurality of tabs pass through one or more of the plurality of openings in response to the depression of the key.
US09911551B2
An electronic device has a concealed external electrical connector that may be activated by a pin of a mating connector. When the pin applies a force to an electrically conductive and flexible region of an exterior housing of an electronic device the electrically conductive region deflects inwards coupling to a contact within the electronic device. A bi-directional communications path is then established from the pin of the connector, through the conductive portion of the housing, to the contact and to circuitry within the housing of the electronic device.
US09911545B2
An anode in a lithium ion capacitor, including: a carbon composition comprising: a phenolic resin sourced carbon, a conductive carbon, and a binder as defined herein; and an electrically conductive substrate supporting the carbon composition, wherein the phenolic resin sourced carbon has a disorder by Raman analysis as defined herein; and a hydrogen content; a nitrogen content; an and oxygen content as defined herein. Also disclosed is a method of making the anode, a method of making the lithium ion capacitor, and methods of use thereof.
US09911544B1
A metal oxide vertical graphene hybrid supercapacitor is provided. The supercapacitor includes a pair of collectors facing each other, and vertical graphene electrode material grown directly on each of the pair of collectors without catalyst or binders. A separator may separate the vertical graphene electrode materials.
US09911524B2
A chip resistor includes: a resistor body having a front surface and a mounting surface which face in opposite directions; a pair of electrodes which are disposed on both sides of the resistor body with the resistor body sandwiched therebetween and are in electrical conduction with the resistor body; and a protective film covering a portion of the resistor body, wherein a plurality of grooves, which does not penetrate through the resistor body, is formed in the front surface of the resistor body.
US09911521B2
A curable composition for an electrical machine is presented. The curable composition includes: (A) about 10 weight percent to about 30 weight percent of a polyfunctional cyanate ester; (B) about 25 weight percent to about 60 weight percent of a first difunctional cyanate ester, or a prepolymer thereof; (C) about 10 weight percent to about 30 weight percent of a second difunctional cyanate ester, or a prepolymer thereof, and (D) about 5 weight percent to about 25 weight percent of a thermally conductive filler comprising boron nitride. An associated method is also presented.
US09911520B2
Disclosed herein are monolayers comprising alkylamine-gold nanoparticles that have tunable electrical and optical properties. Also disclosed is a method for forming the monolayers that comprises self-assembly of the nanoparticles.
US09911514B2
A nuclear reactor includes a reactor core disposed in a reactor pressure vessel. A radiological containment contains the nuclear reactor and includes a concrete floor located underneath the nuclear reactor. An ex vessel corium retention system includes flow channels embedded in the concrete floor located underneath the nuclear reactor, an inlet in fluid communication with first ends of the flow channels, and an outlet in fluid communication with second ends of the flow channels. In some embodiments the inlet is in fluid communication with the interior of the radiological containment at a first elevation and the outlet is in fluid communication with the interior of the radiological containment at a second elevation higher than the first elevation. The radiological containment may include a reactor cavity containing a lower portion of the pressure vessel, wherein the concrete floor located underneath the nuclear reactor is the reactor cavity floor.
US09911513B2
A passive shutdown system for a liquid metal cooled reactor may include a tube and a neutron absorber within the tube. The tube may be configured to extend through a core of the liquid metal cooled reactor. The tube has an upper end and a lower end. The tube defines a flow path for a liquid metal coolant. The neutron absorber is a mobile structure configured to partially obstruct a flow of the liquid metal coolant within the flow path. A method of operating a liquid metal cooled reactor may involve the use of the passive shutdown system.
US09911509B2
Methods and apparatus related to utilization of counter(s) for locating faulty die in a distributed codeword storage system are described. In one embodiment, first logic determines a plurality of values. Each of the plurality of values corresponds to a number of zeros or a number of ones in bits read from a portion of each of a plurality of memory dies. Second logic determines one or more candidates as a faulty die amongst the plurality of memory dies based at least in part on a comparison of the plurality of values for the plurality of memory dies. Other embodiments are also disclosed and claimed.
US09911499B2
According to one embodiment, a semiconductor memory device includes first and second memory cells, a word line, and first and second bit lines. The first and second bit lines are electrically connected to one ends of the first and second memory cells, respectively. In retry reading, a voltage applied to the first bit line is different from a voltage applied to the second bit line.
US09911498B2
A memory system includes a semiconductor memory device having memory cells arranged in rows and columns, and a controller configured to issue a write command with or without a partial page program command to the semiconductor memory device. The semiconductor memory device, in response to the write command issued without the partial page command, executes a first program operation on a page of memory cells and then a first verify operation on the memory cells of the page using a first verify voltage for all of the memory cells of the page, and in response to the write command issued with the partial page command, executes a second program operation on a subset of the memory cells of the page and then a second verify operation on the memory cells of the subset using one of several different second verify voltages corresponding to the subset.
US09911494B1
A storage device includes an interface, NVM device, and control module. The control module may be configured to receive a first write operation and a second write operation. The first write operation comprises a SET operation configured to place a cell of the NVM device in a relatively low-resistance state. The control module may be further configured to execute the first write operation by causing an electrical pulse to be applied to a first cell of the NVM device to place the first cell in the relatively low-resistance state. The control module may be further configured to execute the second write operation by causing an electrical pulse to be applied to a second cell of the NVM device before the first electrical pulse has concluded. A single tile of the NVM device includes the first cell and the second cell.
US09911464B2
In some implementations, a hard drive carrier is configured to couple and decouple a hard drive to/from a chassis (e.g., motherboard). The hard drive carrier can receive and house a hard drive in a base securing portion, the base securing portion adapted to slide and tilt in relation to a base of the hard drive carrier. The hard drive carrier can include a pivoting lever comprising a handle that can be used to couple and decouple the hard drive from the motherboard. Using the handle to pivot the lever into an open position causes the hard drive to tilt upwards to decouple from the chassis and facilitate insertion or removal of the hard drive to/from the hard drive carrier. Pivoting the lever into a closed position causes the hard drive to lie flat and couple to the chassis.
US09911460B2
In a computing device that implements an encoder, a method comprises receiving an encoded video sequence with a file container, receiving input to execute a trimming operation to create a frame accurate target segment of one or more desired pictures from the encoded video sequence and trimming to frame accuracy. Trimming to frame accuracy is accomplished by changing the parameter identifications of leading and trailing portions, if supported, or changing the parameters, and using the changed parameters or parameter identifications in re-encoding the leading and trailing portions, while an untouched middle portion between the leading and trailing portions is re-muxed without re-encoding.
US09911458B1
In at least one embodiment, an optical data storage tape including a plurality of tracks is provided. The plurality of tracks include a first track having a plurality of first informational fields configured to store one of first positional information indicative of a location on an optical tape and a first predetermined sequence of data. The plurality of tracks further include a second track located adjacent to the first track and having a plurality of second informational fields configured to store one of second positional information indicative of the location on the optical tape and a second predetermined sequence of data. The first positional information is located adjacent to the second predetermined sequence of data on the optical tape to minimize cross track interference during a read operation.
US09911454B2
The disclosure includes a camera array comprising camera modules, the camera modules comprising a master camera that includes a processor, a memory, a sensor, a lens, a status indicator, and a switch, the switch configured to instruct each of the camera modules to initiate a start operation to start recording video data using the lens and the sensor in the other camera modules and the switch configured to instruct each of the camera modules to initiate a stop operation to stop recording, the status indicator configured to indicate a status of at least one of the camera modules. The camera modules of the camera array are configured to provide a 3× field of view overlap.
US09911451B2
An optical recording medium includes a plurality of information signal layers on which information signals are to be optically recorded. Among the plurality of information signal layers, the information signal layer closest to the light-receiving surface has a reflectance of more than 4%.
US09911442B1
An apparatus includes a first controller, a second controller, and a coupling compensator. The first controller is configured to generate a first voice coil motor (VCM) control signal in response to a first position error signal. The second controller is configured to generate a second VCM control signal in response to a second position error signal. The coupling compensator is configured to generate a first feedforward correction signal in response to the first VCM control signal. The first feedforward correction signal modifies the second VCM control signal to generate a modified second VCM control signal.
US09911436B2
A sound recognition apparatus can include a sound feature value calculating unit configured to calculate a sound feature value based on a sound signal, and a label converting unit configured to convert the sound feature value into a corresponding label with reference to label data in which sound feature values and labels indicating sound units are correlated. A sound identifying unit is configured to calculate a probability of each sound unit group sequence that a label sequence is segmented for each sound unit group with reference to segmentation data. The segmentated data indicates a probability that a sound unit sequence will be segmented into at least one sound unit group. The sound identity unit can also identify a sound event corresponding to the sound unit group sequence selected based on the calculated probability.
US09911433B2
A method of synchronizing playback of audio data sent over a first wireless network from an audio source to a wireless speaker package that is adapted to play the audio data. The method includes comparing a first time period over which audio data was sent over the first wireless network to a second time period over which the audio data was received by the wireless speaker package, and playing the received audio data on the wireless speaker package over a third time period that is related to the comparison of the first and second time periods.
US09911428B2
A noise suppressing apparatus calculates a phase difference on the basis of a first and second sound signal obtained by a microphone array; calculates a first sound arrival rate on the basis of a first phase difference area and the phase difference and a second sound arrival rate on the basis of a second phase difference area and the phase difference; calculates a dissimilarity that represents a level of difference between the first sound arrival rate and the second sound arrival rate; determines whether the pickup target sound is included in the first sound signal on the basis of the dissimilarity; and determines a suppression coefficient to be applied to the frequency spectrum of the first sound signal, on the basis of a result of the determination of whether the pickup target sound is included and on the basis of the phase difference.
US09911423B2
It is disclosed inter alia a method comprising: estimating a value of entropy for a multi-channel audio signal; determining a channel configuration of the multi-channel audio signal from the value of entropy; and encoding the multi-channel audio signal, wherein the mode of encoding is dependent on the channel configuration.
US09911419B2
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for obtaining, for each of multiple words or sub-words, audio data corresponding to multiple users speaking the word or sub-word; training, for each of the multiple words or sub-words, a pre-computed hotword model for the word or sub-word based on the audio data for the word or sub-word; receiving a candidate hotword from a computing device; identifying one or more pre-computed hotword models that correspond to the candidate hotword; and providing the identified, pre-computed hotword models to the computing device.
US09911407B2
A system and method are presented for the synthesis of speech from provided text. Particularly, the generation of parameters within the system is performed as a continuous approximation in order to mimic the natural flow of speech as opposed to a step-wise approximation of the feature stream. Provided text may be partitioned and parameters generated using a speech model. The generated parameters from the speech model may then be used in a post-processing step to obtain a new set of parameters for application in speech synthesis.
US09911402B1
A drum beater shaft with a flexible coupling means disposed between the base portion of the shaft and the head portion of the shaft is disclosed. The base portion of the shaft is fixed and hingedly attached, typically, to a pedal operated actuator. The head portion of the shaft contains a striking device used to contact the drum when actuated by the pedal. In one preferred embodiment, the flexible coupling means disposed between the base portion and head portion of the drum beater shaft takes the form of a spring surrounded by an elastic sheath. In another preferred embodiment, the flexible coupling means takes the form of a universal joint surrounded by an elastic sheath, In yet another preferred embodiment, the flexible coupling means takes the form of a ball an socket joint surrounded by and elastic sheath.
US09911400B2
An improve navigation application can generate and display a composite representation of multiple POIs when POI icons representing the POIs appear to be overlapping. Some embodiments display the composite representation when a certain zoom level is reached for a map including the multiple POI icons. In some embodiments, the navigation application can determine POIs that may be of interest to the user based on the user's attributes and activity history and generate the composite representation based on those attributes. The composite representation can include multiple POI icons that are displayed adjacent to each other such that a user of the navigation application can readily identify POIs that are likely to be of interest to the user within a region.
US09911397B2
Briefly, methods and apparatus to provide image content to, and display image content on, variable refresh rate displays with reduced input lag. The methods and apparatus allow for image tearing, or the displaying of image content from more than one video frame, when the render rate of a provided video frame falls outside the display refresh rate range of a variable refresh rate display when the display is refreshing with a previous frame (e.g. the display is in active refresh), thus reducing the input lag of the content of the provided video frame. The methods and apparatus may also prevent image tearing when the render rate of provided video frames is within the display refresh rate range of a display.
US09911396B2
An interactive media wall is provided on which multiple media contents can be simultaneously displayed. Multiple users can interact with the interactive media wall such that visual portions of the multiple media contents can be presented on the interactive media wall, while audio portions of the media contents may be presented to each of the multiple users via peripheral listening devices. Users consuming the same media content can communicate via a chat session(s).
US09911392B2
A medical image diagnosis apparatus according to an embodiment includes a controller. The controller generates a plurality of candidates for a first cross-sectional image from three-dimensional image data obtained by taking images of a heart. The controller generates, from the three-dimensional image data, one or more second cross-sectional images each of which intersects the candidates for the first cross-sectional image. The controller displays in parallel on a display, the candidates for the first cross-sectional image, as well as the second cross-sectional images on each of which information is superimposed. The information indicates positional relationships between the candidates for the first cross-sectional image and the second cross-sectional image.
US09911386B2
In one embodiment a display assembly comprises a liquid crystal module, a backlight assembly comprising an array of light emitting diodes, a timing controller, and a backlight controller coupled to the timing controller. The backlight controller comprises logic to initiate a power activation cycle at the beginning of an image presentation timing cycle and terminate the power activation cycle at the termination of the image presentation timing cycle. Other embodiments may be described.
US09911375B2
A display device includes a first substrate that is non-rectangular and includes a display area having a plurality of pixels and a non-display area located around the display area, a second substrate that faces the first substrate and overlaps part of the first substrate, an integrated circuit that provides a driving signal to the pixels, and a first pad to which a flexible printed circuit board that delivers an external signal is coupled and which is electrically connected to the integrated circuit. The non-display area of the first substrate includes a first area that extends in a first direction and is exposed from the second substrate and a second area that extends in a second direction different from the first direction and is exposed from the second substrate. The integrated circuit is located in the first area. The first pad is located in the second area.
US09911374B2
A display device is provided for dividing one frame period into a plurality of subframe periods, separating data of an input image on a per bit basis, mapping the data of the input image to the subframe periods, and representing gray levels of the input image. The display device includes a measurement unit configured to measure a current of a pixel; a luminance error calculation unit configured to calculate a rush current of the pixel emitting light at the measured current value, and to calculate a luminance error of the pixel based on the rush current; and a luminance error compensation unit configured to reduce an emission time of one of the subframe periods or remap the subframe periods to compensate for the luminance error.
US09911372B2
A backlit operating portion of a control device includes a veneer having indicia defining an open portion exposing a backlit component, a floating portion, and one or more ribs that suspend the floating portion. The rib defines an upper surface recessed relative to a front surface of the veneer, and opposed sides that extend from a base of the rib to the upper surface, such opposed sides tapered between the base and the upper surface, such that the upper surface is narrower than the base.
US09911370B2
A flag pin is provided comprising a pin, a flag at the end of the pin, a sleeve positioned around the pin, and a flexible base receiving the tip of the pin therethrough and abutting the bottom of the sleeve. A user may insert the flag pin into the sleeve so that the tip of the pin extends from the bottom of the sleeve, and move the bottom of the pin through the flexible base so that the top of the base rests against the bottom of the cylindrical sleeve. The bottom end of the pin may then extend into a base on which the pin is to be placed, with the flexible base vertically supporting the cylindrical sleeve and the pin itself, and holding the pin in a generally vertical orientation. A kit for assembling flag pins and a related method are also provided.
US09911363B1
An arch model has a set of teeth and a wall which bridges the set of teeth and has a surface opposite the set of teeth. A cover which contains informational material about the dental arch model separably attaches to the wall of the dental arch model. Different informational material can be presented by removing the cover and replacing it with another cover which contains the different informational material.
US09911356B2
Audio bible players with a 6-digit numerical indexing system to the chapter level or a 9-digit numerical indexing system to the verse level are disclosed. Users can not only find a particular chapter or verse of the bible quickly, but also can switch to the same chapter or verse of a different translation easily for comparison study. They are easy and convenient to use, and are great tools for bible study, bible memorization, language study, and sharing bible with people in other languages, etc.
US09911355B2
Methods and a system are provided. A method includes receiving a plurality of words comprised in a Rapid Serial Visual Presentation. The method further includes determining a cognitive load of the plurality of words by using at least one metric. The cognitive load is determined on any of a word level and a word sequence level. The method also includes calculating a variable presentation rate for the plurality of words based on the cognitive load. The variable presentation rate is capable of being varied on any of the word level and the word sequence level. The method additionally includes controlling a displaying of the plurality of words on a display device in accordance with the calculated variable presentation rate.
US09911352B2
Systems, methods, and other embodiments associated with producing an immersive training content module (ITCM) are described. One example system includes a capture logic to acquire information from which the ITCM may be produced. An ITCM may include a set of nodes, a set of measures, a logic to control transitions between nodes during a training session, and a logic to establish values for measures during the training sessions. Therefore, the example system may also include an assessment definition logic to define a set of measures to be included in the ITCM and an interaction logic to define a set of interactions to be included in the ITCM. The ITCM may be written to a computer-readable medium.
US09911349B2
A system and method for language instruction for implementation on a language instruction system that includes a computer system, is disclosed, wherein the method may include identifying a speech segment in a target language, that is susceptible to mispronunciation by language learners; selecting an auditory attribute for use in playing the identified speech segment by the language instruction system; altering a level of the auditory attribute to differ from a naturally occurring level of the attribute; and playing a first text sequence by the language instruction system, including at least one instance of the identified speech segment, using the altered level of the auditory attribute.
US09911346B2
Some embodiments are directed to an unmanned vehicle for use with a companion unmanned vehicle. The unmanned vehicle includes a position unit that is configured to determine a current position of the unmanned vehicle. The unmanned vehicle includes a memory unit that is configured to store a planned path of the unmanned vehicle. The unmanned vehicle includes a control unit that is configured to determine that the unmanned vehicle is off-course based on the current position of the unmanned vehicle and the planned path assigned to the unmanned vehicle, generate a delay and a corrected path for the unmanned vehicle, and communicate the delay and the corrected path to the companion unmanned vehicle. The control unit is further configured to control a movement of the unmanned vehicle along the corrected path after the delay.
US09911342B2
An avionics wake turbulence awareness system and method for use in an aircraft includes an ADS-B receiver that is adapted to be positioned in an equipped aircraft and receives ADS-B transmissions from other aircraft. A control system is responsive to the ADS-B receiver and determines an identity for each of the other aircraft and determines a movement of each of the other aircraft relative to the equipped aircraft. The control system determines a flight path history of each of the other aircraft from their respective identities and movements relative to the equipped aircraft. An output device is responsive to the control system to provide guidance to a pilot of the equipped aircraft to avoid an encounter with a wake turbulence caution area that is defined by a flight path history of another aircraft. The control system evaluates the relative risk of the equipped aircraft encountering the respective wake turbulence caution areas of each of the other aircraft, and after selecting an aircraft of the other aircraft with a highest priority, provides guidance to the pilot of the equipped aircraft to avoid an encounter with a wake turbulence caution area of the selected aircraft.
US09911337B1
The present invention is a flight deck situational awareness communication system for providing integrated controller to pilot data link communication (CPDLC) message function for an aircraft. The system includes a memory configured for receiving and storing a CPDLC message from a communicatively coupled remote CPDLC communication system. The flight deck system further includes a processor. The processor is communicatively coupled with the memory and configured for receiving the CPDLC message stored in the memory. The processor is further configured for generating an image including a depiction of the content of the received CPDLC message overlaid onto an application depiction. The processor is communicatively coupled with a display and provides the image to the display. The display is configured for receiving and displaying the image.
US09911334B2
A connected vehicle traffic safety system comprises a traffic signal controller and a roadside unit (RSU) located at a one-way traffic lane for avoiding crashes with vehicles of wrong-way drivers by issuing warnings for wrong-way violations. The traffic signal controller is configured to operate a traffic signal. The traffic signal is facing a wrong-way traffic and is set to dwell permanently in a RED signal phase. The one-way traffic lane is configured as a signalized intersection with a wrong-way approach that is programmed as a traffic signal phase dwelling in RED. The roadside unit (RSU) is configured to transmit a Signal Phase and Timing (SPaT) indication for the RED signal phase. A first Onboard Unit (OBU)-equipped vehicle having an Onboard Unit (OBU) that is configured to calculate a RED light violation based on at least one of vehicle location data, direction heading data, and speed data provided from the first OBU-equipped vehicle and the SPaT indication of the RED signal phase to detect the first Onboard Unit (OBU)-equipped vehicle as a wrong-way vehicle.
US09911327B2
A method, apparatus and computer program product are provided to identify a split lane traffic location. In a method, a distribution of speeds associated with a plurality of historical probe points representative of travel along a road segment upstream of diverging downstream road segments is determined for each of a plurality of epochs. For each epoch, the distribution is evaluated to cluster the speeds associated with the plurality of historical probe points during the respective epoch into higher and lower speed clusters. For each epoch, it is determined whether a bi-modality condition exists upstream of the diverging downstream road segments based upon a relationship between the higher speed and the lower speed during the respective epoch. A split lane traffic location is then identified based upon a bi-modality frequency with which a bi-modality condition is determined from the historical probe points associated with the plurality of epochs.
US09911324B2
Systems, methods and media for remote control of electronic devices using a proximity sensor are provided. In some implementations, the system comprises: a proximity sensor comprising an infrared emitter and an infrared detector, wherein the proximity sensor is configured to emit infrared light having specific properties using the infrared emitter and sense reflected light having the specific properties using the infrared detector to determine proximity of the sensor to an object; and a hardware processor that is programmed to: receive a user instruction to cause a command to be issued to control an electronic device; determine a code to be transmitted that corresponds to the command from a plurality of codes associated with the electronic device; and provide at least one signal to the proximity sensor to cause the proximity sensor to emit an infrared signal corresponding to the code instead of emitting infrared light having the specific properties.
US09911312B2
A system and method is provided for monitoring hygiene compliance.
US09911304B2
A distributed control method in a distributed control system including a process executed by a by a first notification device, the process including notifying a detection of a first event to a second notification device, storing, in a storage device, acknowledgement information associating an event identifier indicating the first event with a device identifier indicating the second notification device when a negative acknowledgement is received from the second notification device, determining whether the event identifier indicating the first event is stored in the storage device or not when a request for a notification of the detection of the first event is received from a third notification device, and deleting, from the storage device, a device identifier associated with the event identifier indicating the first event when it is determined that the event identifier indicating the first event is stored in the storage device.
US09911290B1
Devices, systems, and method are provided for tracking items in a store for processing a cashier-less purchase transaction. In one example, a method includes receiving sensor data regarding items associated with shelves of a store. The method also includes identifying a user entering the store. The identifying uses at least a device having wireless communication. The device has an application that is executed in associated with a user account of the user. Also, tracking the user movements while in the store. The tracked movements include detecting proximity of the user to a shelf having an item. And, detecting interaction data for the item on the shelf of the store by the user. The interaction data is configured to identify a type of said item and enable add said item to an electronic shopping cart of the user having said user account for enabling processing of said cashier-less purchase transaction. The method includes receiving data indicative of said user leaving an area of the store while the item is in the electronic shopping cart. Leaving is indicative that the user intends to purchase the item. An exit of the area includes one or more sensors for confirming that the user has left the area. The method includes processing an electronic charge to a payment service associated with the user account of the user for the item based on said confirming.
US09911286B2
A video output signal analyzes that analyzes a video output signal to determine game play information. In video poker, card values and player strategies can be determined based on a “reverse encoding” of the video signal to determine the original video bitmap. The bitmap can then be analyzed to determine what is taking place during a game, without having to receive this information directly from the processing unit that is actually implementing the game.
US09911285B2
The inventions herein relate to novel games of chance and apparatus and methods for their play. In certain embodiments, the existing lottery infrastructure is used in conjunction with electronic remote game play. A player receives a ticket identification number (TIN), optionally via lottery game play, and then plays an electronic game based upon the TIN. The remote system contains information associated with the TIN, for example, identification of which game will be played, and in a predetermined context, whether the player is to win or lose, and if they win, the form of the prize.
US09911283B2
A pari-mutuel based interleaved wagering system is disclosed, including an interactive controller configured to: communicate element request data associated with an interactive application; communicate an element request; receive element instructions comprising elements; and execute the interactive application using the elements; a wager controller constructed to: receive wager request instructions; place wagers; determine wager outcomes for wagers; and communicate wager outcome data; and the application controller constructed to: receive the element request data; scan the element request data to determine the element selection; generate the wager request instructions; instruct the wager controller by communicating the wager request instructions; receive wagering acknowledgment data; associate the wagers with the element selection; receive the wager outcome data; receive the application element request; scan the application element request to determine a request for the selected element; generate real credit element instructions; and instruct the interactive controller by communicating the real credit element instructions.
US09911272B2
A computer implemented game has a game code module. The game code module generates a group game mode for user engagement at a user interface, the group game mode providing user selectable game objects on an initial game board on the display. The game code module is configured to receive from a server remote user game data generated by other user devices of users engaged in the group game mode. The display displays a progress indicator which indicates cumulative progress of the user and other users, using the game data generated by the user device and the remote user game data.
US09911264B2
The present invention relates to a coin counting apparatus including: a frame in which an accommodation part is formed and a coin transfer channel connected to an outlet provided at a partition forming the accommodation part; a rotating transfer plate rotatably mounted in the accommodation part and including coin-accommodation grooves on a top surface thereof to transfer a coin; a coin-discharging roller unit configured to push the coin toward the outlet using rotational power of the coin to pass the coin through a counter sensing unit at a predetermined speed; and a coin detection unit including a light irradiation unit configured to emit a plurality of beams toward the coin transfer channel and an optical detection unit configured to detect beams reflected by coins to count the coins.
US09911260B2
A computer-implemented method includes monitoring one or more mobile devices within a venue. The computer-implemented method further includes receiving a scan event indication denoting a scan of a ticket by a scanning device. The computer-implemented method further includes, responsive to receiving a scan event indication, identifying a candidate list, wherein the candidate list includes one or more candidate mobile devices that are within a threshold distance of the scanning device. The computer-implemented method further includes associating the ticket with at least one of the one or more candidate mobile devices. A corresponding computer system and computer program product are also disclosed.
US09911256B1
One embodiment provides a method, including: obtaining, using a sensor, biometric data of a user; determining, using a processor, that the biometric data of the user does not match biometric data of a known user; and securing, based on the biometric data of the user, an area within a building. Other aspects are described and claimed.
US09911251B2
A vehicle diagnostic system for a vehicle including an electronic control unit (ECU) and an associated diagnostic port includes a dongle, an imaging device, and a single wireless device. The dongle is configured to mate with the diagnostic port to enable the dongle to establish a wired communication link with the ECU. The imaging device is configured to generate imaging data. The single wireless device includes a display unit, an input unit, a memory storing program instructions, and a processor. The processor is configured to execute the program instructions to establish a wireless communication link with the ECU via the dongle, to receive diagnostic data from the ECU, to render the received diagnostic data on the display unit, to receive user input data from the input unit based on the rendered diagnostic data, and to transmit the user input data to the ECU.
US09911239B2
Techniques for augmenting an image of an object captured and displayed in real time with associated content are disclosed. In one embodiment, the method for augmenting the image includes receiving information defining a sampled frame of a video being captured by an electronic device in substantially real time, determining information representative of an object captured in the sampled frame based on the received information, causing the determined information to match stored information defining a plurality of items to locate an item matched to the captured object, retrieving content associated with the matched item, and providing the retrieved content for display with the captured image on the electronic device. The retrieved content may be rendered in an overlay element that overlays the captured image displayed on the electronic device. The rendered content is configured to enable a user to interact with the content.
US09911237B1
Image processing techniques for self-captured images are disclosed. An image can be captured during activation of an illumination element of a mobile device. Presence of a representation of the mobile device can be determined in the captured image based at least in part upon locating a reflection of an illumination produced by the illumination element. Dimensions of the representation of the mobile device can be determined and compared to actual dimensions of the mobile device to provide a scaling factor. The scaling factor can be used to determine the size of various objects, including articles of clothing, in the image.
US09911236B2
An optical see-through head-mounted display device includes a see-through lens which combines an augmented reality image with light from a real-world scene, while an opacity filter is used to selectively block portions of the real-world scene so that the augmented reality image appears more distinctly. The opacity filter can be a see-through LCD panel, for instance, where each pixel of the LCD panel can be selectively controlled to be transmissive or opaque, based on a size, shape and position of the augmented reality image. Eye tracking can be used to adjust the position of the augmented reality image and the opaque pixels. Peripheral regions of the opacity filter, which are not behind the augmented reality image, can be activated to provide a peripheral cue or a representation of the augmented reality image. In another aspect, opaque pixels are provided at a time when an augmented reality image is not present.
US09911229B2
Transmission and configuration of three dimensional digital content is described. In one or more implementations, three-dimensional digital content is received having a three-dimensional mesh of a plurality of vertices. Each vertex includes a definition of a characteristic of the three-dimensional content. The definition of the characteristic is transformed for each vertex from a floating point representation to a fixed point representation. The fixed point representation includes a plurality of values that have different amounts of significance in defining the characteristic, one to another. The plurality of values is indexed of the fixed point representation of the definition of the characteristic. The indexing is based on the different amounts of significance, one to another. Output of the three dimensional digital content is controlled based on the indexed plurality of values.
US09911217B2
An animation arrangement for a vehicle is provided. The animation arrangement has a display device, configured to display an animation based on an instruction set, a storage device configured to store a first instruction set and a second instruction set for displaying the same animation on the display device, and a calculating device configured to select one of the first and second instruction sets for displaying an animation on the display device. The calculating device is configured to select one of the first and second instruction sets for displaying an animation on the display device based on a load parameter of the calculating device.
US09911204B2
A processor performs pattern matching on a search target image using a reference image. The processor uses the reference image to calculate a model pyramid, which has model edges and different layers, and uses the search target image to calculate the search target pyramid, which has search target edges and layers having size reduction factors which are the same as those of the model pyramid. The processor performs pattern matching on the search target pyramid using the model pyramid. Calculation of the model pyramid includes (i) extracting and calculating sizes of edges from the reference image, (ii) obtaining maximum size reduction factors of the individual edges, and (iii) setting an edge (a) which has a size reduction factor equal to or larger than a target layer size reduction factor and (b) which has been subjected to size reduction as a model edge of the target layer.
US09911189B1
A new area to search in a ground feature database is determined based on a last detected position. Information from a downward facing sensor coupled to an aircraft is obtained. The information from the downward facing sensor is compared with information associated with the new area in order to find a new position.
US09911184B2
A fingerprint sensing apparatus may include a fingerprint sensor system and a control system capable of receiving fingerprint sensor data from the fingerprint sensor system. The control system may be capable of determining fingerprint sensor data blocks for at least a portion of the fingerprint sensor data and of calculating statistical variance values for fingerprint sensor data corresponding to each of the fingerprint sensor data blocks. The control system may be capable of determining, based at least in part the statistical variance values, whether an object is positioned proximate a portion of the fingerprint sensor system.
US09911180B2
Systems and methods are disclosed for improving image quality by modifying received radiation wavefronts with one or more uncalibrated variable phase plates at the pupil plane of the optical system, to produce an atmospheric-like blurred image on the focal plane with an effective increase in the sampling parameter Q. Real-time image restoration algorithms may then be applied to data sets sampled from the blurred image formed on the detector array. Numerous phase plate embodiments are provided for modifying the wavefront.
US09911175B2
In one example, a method for processing video data includes receiving, by a sink device and from a source device, one or more graphical command tokens that are executable to render original video data; modifying, by the sink device, the graphical command tokens to generate modified graphical command tokens that are executable to render modified video data different from the original video data; and outputting, for presentation at a display operatively connected to the sink device, the modified video data.
US09911169B1
A method for apportioning a vehicular toll among toll service subscribers in a vehicle can include determining a number of occupants in the vehicle in order to determine a toll amount, and dividing the toll amount among the toll service subscribers in the vehicle. The method can also detect the number of occupants and/or toll service subscribers in the vehicle automatically, or by prompting toll service subscribers to enter the number of occupants.
US09911167B2
Certain examples provide methods, systems and apparatus of content-driven clinical information management. An example method includes facilitating authoring of content and combination of the content into a content-based application, wherein content represents a parameterization of instructions to instruct the content-based application how to operate, the content formulated according to one or more detailed clinical models. The example method includes packaging and deploying the content-based application using a processor to one or more targets for installation. The example method includes facilitating installation of the packaged content-based application at the one or more targets. The example method includes managing the content-based application remotely from the one or more targets. In the example method, content is to be created, stored, deployed, and retrieved independently of the creation and deployment of the content-based application consuming data based on the content.
US09911165B2
Systems and methods are described relating to detecting an indication of at least one attribute of an individual; accepting sensor data about the individual; and presenting a set of health care options at least partially based on the detecting an indication of at least one attribute of the individual and the accepting sensor data about the individual.
US09911139B2
A first computing device operated by a first user of a social networking system sends a quote attributed to a second user of the social networking system to a server device. The server device receives input from a second computing device operated by a second user indicating the consent of the second user to sharing the quote with selected other users of the social networking system. The server device shares the quote with the selected other users of the social networking system in response to receipt of the consent of the second user.
US09911136B2
Methods and systems include determining that a device is proximate to a sign, providing sign identification information associated with the sign, and providing a sign history. A request for sign data associated with the sign identification information may be received, and sign data may be provided. Determining that a sign is proximate to a device may be based on a signal from the sign and/or the device. Additionally, a location of a device may be received and it may be determined that the device is proximate to a sign based on determining a location of the sign and determining that the difference in the location of the device and the location of the sign is less than a given threshold. A request for sign data associated with the sign may be sent. In response, sign data may be received, stored, and displayed.
US09911133B1
Systems and methods are described herein for supporting loyalty tiers. According to certain aspects, a custom number of loyalty tiers may be specified. Dynamic tier boundaries may be defined for each tier based upon a specified number of loyalty points, a percentile of total loyalty points, or a combination thereof. Periodic recomputing of tier boundary values can support dynamic loyalty tiers. According to certain other aspects, a user loyalty status may include a current tier and a pending tier. User loyalty points may be updated for a current loyalty activity. The updated user loyalty points may be compared with a point boundary for the pending tier and the user may be updated to the pending tier. Transacting the tier update with the server may be bypassed to reduce tier update latency. Also, immediate access at the client to features associated with the updated current tier may be supported.
US09911118B2
Embodiments are directed at systems, apparatuses, and methods for indirect device pairing through a trusted intermediary. One embodiment is directed to a method including receiving a pairing identifier associated with an untrusted device controller. The method further comprises extracting the pairing identifier from the pairing request, searching a pairing identifier database for a matching pairing identifier, determining an untrusted device controller associated with the matching pairing identifier, and sending the pairing request to the untrusted device controller. The untrusted device controller may identify the untrusted device, associate the pairing identifier with the trusted intermediary, and lock the pairing identifier. The method further comprises receiving a pairing response indicating that the untrusted device is paired with the computer. Accordingly, the trusted device is indirectly paired to the untrusted device and the trusted device is configured to complete a transaction with the untrusted device without communicating transaction information to the untrusted device.
US09911110B2
Method, systems, and apparatus for processing a payment transaction includes determining that a network connection between a first destination in a payment system and a second destination in a payment system does not satisfy a latency threshold; receiving data indicating a payment transaction between a customer and a merchant; determining whether the payment transaction should be stored, where the determining is based on a risk algorithm model that considers risk factors associated with data regarding the payment transaction, risk factors associated with data regarding the customer, and risk factors associated with data regarding the merchant; if the payment transaction should be stored: storing the payment transaction for future processing; displaying an indication that the payment transaction has been successfully processed; if the payment transaction should not be stored: attempting to send a request for authorization for the payment transaction at a payment service system included in the payment system.
US09911107B2
Generally, this disclosure describes a method and system for automated check-out and drop-off return of products using a mobile device. A method may include purchasing at least one product of a plurality of products wherein each product is located at a respective associated product location in a store that sells the plurality of products and a point of sale of each purchased product corresponds to the respective associated product location.
US09911106B2
Embodiments are provided for enabling dynamic pricing of services to users. The amount of usage all or different services are quantized into quanta of minimum usage units, such as to an amount of effective bits (eBits) in communications services. The amount of usage of the different services is weighted differently, such as according to service cost or demand, to obtain corresponding amount of quanta of usage or eBits for each service. The amount of quanta of usage or eBits for the different services is summed up to provide a total amount of quanta of usage or eBits. The total amount of quanta of usage or eBits is converted into a total charge, as a product of the total amount of quanta of usage or eBits, or a monotonic function of the total amount, and a fixed charge rate per quanta of usage or eBit.
US09911102B2
Software application systems and associated methods for recycling, purchasing, and/or performing other processes with mobile phones, tablet computers, laptop computers, and/or other electronic devices at a kiosk are described herein. In various embodiments, the present technology includes systems and methods associated with an electronic device to facilitate a consumer-operated kiosk processing (e.g., purchasing) the electronic device. In some embodiments, the present technology includes using a mobile app to identify an electronic device, evaluate the electronic device, resolve device issues to enable purchase of the electronic device, etc. Various other aspects of the present technology are described herein.
US09911101B2
Method and apparatus for statistically determining buffers for time variances for scheduled operations. Buffers for a particular operation can be based on a statistical analysis of past instances of the specific operation, and a buffer can be applied based on a selected statistical confidence interval. The statistical analysis can include determining a Gumbel distribution for time variances for a particular operation. Once buffers have been determined for the various operations, itineraries of operations can be prepared such that the scheduled times plus the buffer times for the operations in an itinerary do not exceed personnel limits of the personnel who may be assigned to the itineraries.
US09911100B1
Techniques are described for facilitating performance of tasks supplied by task requesters, such as by a task exchange server interacting with mobile task performer users available to perform tasks at various geographical locations. Some or all of the tasks may each be associated with geographical locations and/or other device-related criteria related to the performance of the task, and one or more mobile task performer users may be identified as being appropriate to perform the task based on the location of, qualifications of, and/or characteristics of mobile device(s) of the user. Such identified task performer users may then be notified of such appropriate tasks in various ways, such as by sending one or more electronic messages with information about the tasks to one or more mobile devices of the users, and may in some situations use one or more of their mobile devices as part of the task performance.
US09911098B2
A dynamic notary system having one or more processors, and one or more non-transitory computer readable medium coupled to the one or more processors with at least one of the computer readable medium being local to the one or more processors. The one or more non-transitory computer readable medium stores computer executable instructions, that when executed by the one or more processors cause the one or more processors to: (1) verify a notary with user identification information stored on the at least one computer readable medium local to the one or more processors, (2) retrieve a document to be notarized from the one or more non-transitory computer readable medium, (3) receive a signatory's electronic signature, (4) receive the notary's electronic signature, (5) apply a notary seal to the document, and (6) lock the document in an unchangeable format.
US09911096B2
A computerized system and method are provided for managing an inventory of cargo containers through the loading and pre-shipment inspection process. The computerized system may be an in-house programmed solution for realtime exchange of information in an organized manner between exporter and importer. The data and photographic documentary are automatically compiled into a formatted property inspection report that is automatically uploaded to a cloud-based server system. The photographic documentary is combined with other essential information including booking number, container number, seal number, weight, and company reference number, and made accessible at a web-based interface for turnkey management of an inventory of cargo containers.
US09911092B2
Various embodiments of the present invention provide systems and methods for enabling design, generation, and execution of real-time workflows. Such embodiments provide a graphical designer including a plurality of shapes representing the various objects of a workflow that are used to model the workflow. In addition, various embodiments of the graphical designer provide shapes to model aspects of the workflow not found in previous graphical designers. Various embodiments also provide a code generator that converts the representation of the workflow into executable code for multiple target languages. Various embodiments also provide a workflow engine based on a Petri net model responsible for executing the workflow and for delegating tasks to be performed for the workflow to an operating system. In various embodiments, the workflow engine further includes a platform abstraction layer that provides a transition layer from the Petri net language to the operating system language.
US09911087B1
A system and method efficiently computes travel times between an origin and destination, minimizing expensive calls to a third party service by first geographically expanding both origin and destination and then searching a cache of previously computed or obtained travel times for any route satisfying the expanded origin and destination. A further embodiment concerns a system and method to prepare an optimized routing sequence to travel to a set of geographical task sites, in satisfaction of applicable conditions for one or more of the task sites. Advantageously, optimized routing may employ the disclosed method of computing travel times between origin and destination.
US09911079B2
A method for manufacturing a carrier tape housing electronic components with seal materials includes preparing a tape-shaped main body with housing holes including bottom surfaces along a longitudinal direction, providing chip-shaped electronic components respectively into the housing holes, affixing a tape-shaped seal material having an adhesive layer on one principal surface to the tape-shaped main body such that the adhesive layer covers the housing holes and adheres to the electronic components, and forming cuts in the tape-shaped seal material to separate portions defining and functioning as the seal materials including portions at least partially overlapping with the respective housing holes in a planar view from the other portions.
US09911077B2
An RFID transponder in one embodiment comprises a radio frequency (RF) transceiver, processing logic coupled to the RF transceiver, a switch coupled to the processing logic, a tunneling device coupled to the switch and a differential sensing circuit having a first input coupled to the tunneling device and a second input coupled to a predetermined reference voltage. In one embodiment, the tunneling device can discharge to a voltage below the predetermined reference voltage.
US09911076B2
A rectification circuit has a first terminal to which an alternating-current voltage is input from an antenna, a second terminal to which a direct-current voltage is input from the antenna, a first rectification element, a second rectification element, and a voltage rectification circuit. The first rectification element is connected between the first terminal and the second terminal, causes a current to flow in a first direction from the first terminal to the second terminal, and cuts off a current in a second direction from the second terminal to the first terminal. The second rectification element is connected between the first terminal and the second terminal, causes a current to flow in the second direction, and cuts off a current in the first direction. The voltage rectification circuit outputs a rectified voltage obtained by rectifying a voltage that is input between the first terminal and the second terminal.
US09911064B2
Provided is a technique for reducing the amount of calculation and storage costs when an alignment process and/or an image quality correction process is performed on a plurality of radiological images in order to perform comparative reading. A correction amount calculation unit 22 calculates a correction amount for matching the position and/or image quality of radiological images other than a reference radiological image among a plurality of radiological images including the same photographic subject with the position and/or image quality of the reference radiological image for each of the other radiological images. A storage processing unit 28 stores the correction amount for each of the other radiological images so as to be associated with the reference radiological image.
US09911059B1
A process for recovering a vehicle includes obtaining a red green blue (RGB) image comprising a target on a recovery device. An input received from a user designates a target hue value and a target luminance value. The RGB image is converted to a hue value saturation (HSV) color model. The HSV color model is split into a hue value plane and a luminance value plane. A hue band pass filter and a luminance band pass filter are configured with appropriate thresholds. The configured hue band pass filter and the luminance band pass filter are applied to the hue value plane and the luminance value plane, respectively. The filtered hue value plane and the filtered luminance value planes are combined to yield a plurality of potential target pixel groupings. The most probable target is determined from the plurality of potential target pixels. The vehicle is directed to the target.
US09911056B2
In a method of generating a training image for teaching of a camera-based object recognition system suitable for use on an automated vehicle which shows an object to be recognized in a natural object environment, the training image is generated as a synthetic image by a combination of a base image taken by a camera and of a template image in that a structural feature is obtained from the base image and is replaced with a structural feature obtained from the template image by means of a shift-map algorithm.
US09911038B2
The efficiency of work for identifying reference points included in photographed images is improved. A survey data processing device includes a data receiving unit 103 that receives data of two still images, an operation information receiving unit 104 that receives a selection of reference points among multiple reference points which are included in both of the two still images and have known location information, an exterior orientation parameter calculating unit 106 that calculates exterior orientation parameters of a camera, a coordinate integrating unit 110 for obtaining an integrated coordinate system for describing both the locations of an unselected reference point and the camera, a back-projected image generating unit 111 for generating a back-projected image by back-projecting the unselected reference point in the integrated coordinate system, and a target position estimating unit 112 that estimates a position of the unselected reference point in a still image.
US09911036B2
Methods and systems describe calculating an estimated focal point for a feature of interest within an ocular area of a subject using acquired test images and focal points. A curve is approximately fit to the defocus measurements located at different focal points. A maximum of the curve is identified that corresponds to an estimated focal point of the subject's iris. An image capture device can then record an approximately focused image of the iris using the estimated focal point. This reduces the time and computing resources needed to capture an image iris that is in focus where the subject may be located at a variable, unknown standoff distance. These methods and systems can be used for biometric identification using iris imaging, among other applications where quickly focusing an imaging system is advantageous.
US09911035B2
A method is provided for evaluating a document, including the following steps: providing an image data connection for transmitting an image signal between a second data processing device, which includes an image recording device, and a first data processing device, recording a transaction identification number associated with user data in the first data processing device, transferring user data to the first data processing device, recording a document by means of the image recording device and transmitting an image of the document to the first data processing device by means of the image data connection, evaluating the document, and storing the result of the evaluation with the transaction identification number and the user data in a database.
US09911031B2
A method for identifying a motion of interest of an individual. The method includes receiving input data from a non-invasive motion sensor measuring movements of a person. The method also includes collecting motion sensor data for an interval of time. The illustrative embodiments also provide for analyzing the motion sensor input data using an analysis application having a set of classified pre-determined motions. The analysis application classifies a movement captured during the interval of time as a motion corresponding to particular a pre-determined motion among a plurality of pre-determined motions. Classification is performed based on shared relative values among the motion sensor input data and the particular pre-determined motion. The illustrative embodiments also provide for generating an output that provides a translation of the movement for identification of a predetermined motion of interest that represents an undesirable ergonomic aspect.
US09911021B2
An electronic product can be configured by a method that includes attaching a machine-readable identification (ID) tag containing an ID code to a hardware unit of the electronic product. The ID code is associated with a particular configuration of the electronic product, and can be read or scanned with a mobile device configured to send the ID code to a provider server device. In response to receiving the ID code, the provider server device can send product configuration instructions and a product configuration application to the mobile device. The product configuration instructions can guide a user through a customized series of electronic product configuration operations. The product configuration application can assist the user in performing configuration operations, can provide customized configuration help, and can establish a wireless link between the mobile device and the electronic product, allowing the user to interact with the electronic product.
US09911015B2
A transponder, such as an electronic toll transponder, is configured to recognize when it is being subjected to consistent and repeated trigger signals over an extended period of time and, in response, the transponder enters a reduced-responsiveness state. In the reduced-responsiveness state, the transponder may only intermittently respond to detected trigger signals. The transponder may recognize when the repeated trigger signal situation has been resolved and then return to normal responsiveness.
US09911012B2
Tamper-respondent assemblies, electronic assembly packages, and methods of fabrication are provided which include multiple, discrete tamper-respondent sensors that overlap, at least in part, and facilitate defining a secure volume about one or more electronic components to be protected, such as an electronic assembly. The tamper-respondent sensors include a first tamper-respondent sensor and a second tamper-respondent sensor, which may be similarly constructed or differently constructed. In certain embodiments, the tamper-respondent sensors wrap, at least in part, over an electronic enclosure, and in other embodiments, the tamper-respondent sensors cover, at least in part, an inner surface of an electronic enclosure to facilitate defining a secure volume in association with a multilayer circuit board to which the electronic enclosure is mounted.
US09911006B2
A functional library can secure data gathering devices of a personal computing device on behalf of a secure application program to provide a more secure computing session during which sensitive data gathering activities are performed using any of those data gathering devices. The functional library, when incorporated within a personal computing device, creates a secure personal computing device on which to execute application programs such as mobile banking applications. The secure functional library acquires exclusive access to one or more of a predetermined plurality of the data gathering devices on behalf of a calling secure software application. Exclusive access is achieved by gaining access to each of the predetermined set and then locking that access throughout either the entire computing session, or at least until the execution of sensitive data gathering activities being performed during that computing session have been completed. The data gathering devices to be included in the predetermined set can be those that are deemed particularly vulnerable to exploitation in view of the types of sensitive data gathering activities to be conducted, or simply all of them for maximum security. The predetermined set can be defined and set for a particular application, or they can be defined more generally within the context of specific sensitive tasks or activities to be conducted.
US09910997B1
Securing a credential is disclosed. A reference to the credential that will provide access to a service is stored in a credential store. The credential from the credential store is provided to an application execution platform having access to the credential store. The application execution platform includes an interface to access the service using the credential. Application code that references the credential stored in the credential store is stored in a code repository.
US09910985B2
An apparatus for identifying related code variants or text samples includes processing circuitry configured to execute instructions for receiving query binary code, processing the query binary code to generate one or more query code fingerprints comprising compressed representations of respective functional components of the query binary code, generating token sequence n-grams of the fingerprints, hashing the n-grams, partitioning samples by length to compare selected samples based on length, and identifying similarity via dynamic decimation of token sequence n-grams.
US09910983B2
A method of detecting suspicious code that has been injected into a process. The method includes identifying suspicious executable memory areas assigned to the process and, for each thread in the process, inspecting a stack associated with the thread to identify a potential return address; determining whether or not the potential return address is located within a suspicious memory area; and, if the potential return address is located within a suspicious memory area, determining whether or not the instruction at the address preceding the potential return address is a function call and, if yes, determining that the potential return address is a true return address and identifying the thread and associated code as suspicious.
US09910979B2
Intercepting inter-process communications by determining a first computer memory location of an inter-process communications function of an instance of a virtual machine and causing an interception function at a second computer memory location to be called when a computer software application calls the inter-process communications function.
US09910968B2
A content management system can detect file events that are suspected to be in error, and notify users having access to files affected by the detected file events of the detected events. The content management system can maintain a log of file events including a plurality of file identifiers. The file identifiers identify files that are associated with a namespace, a file event, and a user account responsible for the file event. An analytics module can analyze the log of file events and notify the user of a suspected error when it may be that the file events were inadvertent. A notification can include a link to restore (undo) the file events if the user confirms that the file events were in error.
US09910962B1
Risk engines and related methods may benefit patients and their physicians. For example, patients may benefit from being able to determine their personal genetic, environmental, and behavioral risks. Moreover, physicians may be able to provide statistically-driven individual recommendations based on a risk engine's determination of such risks. A method can include selecting one or more candidate genetic variants associated with a phenotype from the scientific literature. The method can also include scoring a genetic association between the one or more candidate genetic variants and the phenotype. The method can further include selecting one or more high-scoring genetic variants. Selecting a best genetic variant within each of at least one linkage disequilibrium (LD) block can also be included in the method. The method can additionally include calculating risk associated with the best genetic variant from the at least one LD block.
US09910958B2
The positions of the images and a display mode of at least two images of an object are selected based on a comparison of a provided distance value between the edges of the two displayed images and a distance threshold value. By continuously varying the distance value, the corresponding images and the display mode are adapted to an actual distance value.
US09910957B2
Systems and methods for visualization, sharing and analysis of large data sets are described. Systems and methods may include receiving an input data set, wherein the input data set includes data that can be classified in classification dimensions wherein a first classification dimension is a linear ordering of data entries and a second classification dimension represents analysis criteria, traits of the data entries, or aspects of the data entries; obtaining an unabridged data table listing results for each combination of coordinates in the first classification dimension and the second classification dimension; and displaying contents of the unabridged data table as a visual array wherein two axes correspond to the coordinates and a third axis corresponds to a third classification dimension, wherein the third classification dimension represents an actual value of the respective data point for the coordinates. Methods may also assess the visual array, such as by identifying one or more regions of high density of signals.
US09910956B2
Methods and systems for single molecule sequencing using concatemers of copies of sense and antisense strands. Concatemers are provided, for example, by carrying out rolling circle amplification on a circular molecule having sense and antisense regions to produce repeated copies of the sense and antisense regions connected by linking regions. The circular molecules can be produced by ligating hairpin adapters to each end of a double-stranded nucleic acid having a sense and antisense strand. The ligations can be carried out, for example using blunt end ligation. In some cases, a single molecule consensus sequence for a single template molecule is obtained. A single read from each template molecule can be obtained by comparing the sequence information of the sense and antisense regions.
US09910949B2
In one aspect, a method for tuning input parameters to a synthesis program is provided which includes the steps of: (a) selecting a subset of parameter settings for the synthesis program based on a tuning optimization cost function; (b) individually running synthesis jobs in parallel for each of the parameter settings in the subset; (c) analyzing results from a current iteration and prior iterations, if any, using the cost function; (d) using the results from the current iteration and the prior iterations, if any, to create combinations of the parameter settings; (e) running synthesis jobs in parallel for the combinations of the parameter settings in a next iteration; and (f) repeating the steps (c)-(e) for one or more additional iterations or until an exit criteria has been met.
US09910947B1
The described techniques implement electronic designs with thermal analyses of the electronic design and its surrounding medium by performing thermal modeling that determines at least a thermal RC network for an electronic design. These techniques further generate a thermal network for the electronic design and one or more surrounding media of the electronic design and generate or modify the electronic design with an implementation process at least by guiding the implementation process based in part or in whole upon results of performing one or more thermal analysis on the thermal network.
US09910941B2
Embodiments of the present invention provide methods, computer program products, and systems for generating comprehensive test cases covering new events yet to be covered. Embodiments of the present invention can be used to receive a request to generate a test case, wherein the request comprises a coverage schema associated with a first set of events to be covered in the generated test case. Embodiments of the present invention includes updating the coverage schema, wherein the updating the coverage schema comprises adding a second set of events to be covered in the generated test case and generating constraints used to satisfy requirements for meeting the first set of events and the second set of events in the updated coverage schema. Embodiments of the present invention can generate a test case using the generated constraints and the updated coverage schema.