Abstract:
Systems and methods for operating a security system. The methods comprise: monitoring an area for a presence of an individual or vehicle using wireless signals of a first type that are received by a first radio of the security system; operating the first radio as a wireless sensor for generating sensor data; determining whether the individual or vehicle is exhibiting an unusual behavior using the sensor data and pre-programmed or machine learned patterns of unusual behavior; changing an operating frequency of the first radio when a determination is made that the individual or vehicle is exhibiting unusual behavior; and communicating a wireless signal of a second type from the first radio when the individual or vehicle is exhibiting unusual behavior, where the second type is different than the first type.
Abstract:
This invention relates to an anti-tamper assembly for a circuit board comprising one or more electronic components, the assembly comprising: a container having side walls, a first, closed end and a second, opposing, open end, the container being configured to be mounted on said circuit board at said open end, over at least one of said electrical components, to form, in use, a sealed cavity around said at least one of said electrical components; a source of radioactive particles mounted within said container; an image sensor for capturing image frames within said sealed cavity, in use, wherein said image sensor comprises a detector region defining an array of pixels; and a processor for receiving said captured image frames, monitoring said image frames for changes in the statistical distribution of active pixels and, in the event that statistical distribution of active pixels indicates the presence of a feature in an image frame, generating a tamper alert.
Abstract:
Presented herein are systems and methods for detecting a boundary line crossing based on Round Trip Time (RTT) measured for wireless signals transmitted between and initiator wireless transceiver and a responder wireless transceiver deployed to form a straight boundary line. The initiator wireless transceiver transmits wireless probe signal(s) to the responder wireless transceiver, receives a wireless response signal transmitted by the responder wireless transceiver in response to the wireless probe signal(s), calculates an RTT combining a travel time of the wireless probe signal(s) and the travel time of the wireless response signal(s), compares the RTT to a reference RTT computed for a wireless probe signal and a corresponding wireless response signal transmitted in a clear straight transmission path while the boundary line is clear of obstacles and determines whether an object is blocking the straight transmission path based on a deviation of the RTT from the reference RTT.
Abstract:
A wearable device wearable on a body and a method and an apparatus for providing information by using the wearable device are provided. The wearable device includes at least two sensing units configured to sense detect biometric information of a wearer of the wearable device, and a connector electrically connecting the at least two sensing units to each other and having elasticity.
Abstract:
An optical system for occupancy sensing according to the invention includes a plurality of optical line sensors, each consisting of a linear array of light sensing elements; and an optical light integrating device that integrates light from rays with incidence angles subject to geometric constraints to be sensed by a light sensing element.
Abstract:
A theft prevention system includes an RFID reader configured to read an RFID tag to authenticate access to a predefined area, a laser scanner configured to scan the predefined area and detect an object in the predefined area, and a security component configured to initiate a security action when the detected object is at least one of an unauthenticated object and an unauthorized object.
Abstract:
Disclosed are systems and methods for preventing unauthorized persons from using an electronic device within a facility. In such an embodiment, the system may include a plurality of RFID tags each having unique identification information associated with a wearer of one of the RFID tags. This system may also include an RFID reader associated with the electronic device and having an RFID coverage zone for detecting RFID tags within the coverage zone. A device management system may be connected to the reader and configured to determine whether wearers in the coverage zone are authorized to use the electronic device based at least in part on detected RFID tags' unique identification information. In such an embodiment, the device management system is configured to activate the electronic device if it determines only authorized wearers are detected in the coverage zone, and to deactivate the electronic device if it determines an unauthorized wearer is detected in the coverage zone.
Abstract:
Communications systems and methods can include wide area network communication capabilities provided by a communications module or device and additional functionality provided by one or more interchangeable devices that interface with the communications module. One or more of the interchangeable devices can communicate with the communications module or device via a short range wireless signal, such as for example that of an RFID, WiFi, or Zigbee system. Authentication of the communication device in combination with the one or more interchangeable devices can be included to provide device compatibility and security verification.
Abstract:
A resonant circuit for use with a radio-wave detection system for the prevention of shoplifting or the like which has a coil and capacitor circuit whereby the circuit is permanently destroyed when the tag is exposed to a radio signal that causes a voltage across the capacitor that exceeds the breakdown voltage of the capacitor. The capacitor comprises a dielectric that does not exhibit self-healing. Such dielectrics include ceramics, metal oxides and minerals.
Abstract:
A light beam, preferably from a laser, is reflected from a target, which is a potential intruder. The time period required for the beam to return to a light detector, as well as the intensity of the reflected light, is recorded. The system includes a computer and software for analyzing the measurements of distance and intensity of reflected light. The algorithm for detecting the presence of an intruder is based on changes in the measured distance and/or intensity of reflected light from initial measurements made during a "learning" period. The system tracks targets using data collected in consecutive searches of the area to be protected. Preferably, an alarm is sounded and/or a video camera is slaved to the system.