Abstract:
A pre-charging circuit for the output node of an output buffer of an integrated digital system generates a first pulse for enabling the output of new data and a second pulse having a shorter duration than the first pulse for loading the new data in an output data register. The output data register is coupled to the input of the output buffer. A capacitor is connected in parallel to the load capacitance of the output node of the buffer by a pass-gate. The pass-gate is enabled by a pre-charge command corresponding to the logic AND of the second pulse and of the logic XOR of the new data and the data currently present on the output node. A driver is disabled by the first pulse for charging the capacitor to a voltage corresponding to the logic level of data belonging to the group that includes the new data and a logic inversion of the current data.
Abstract:
A circuit arrangement having at least one electric main switch (T1) with a reference electrode (E), a control electrode (B), and a work electrode (C). A recovery diode (D1; D2) is connected antiparallel to the main flow direction of each main switch (T1). In order to speed up the switch-off process and in particular to reduce the attendant power loss, each main switch (T1) is assigned an electric auxiliary switch (T11; T22), whose work electrode is connected to the control electrode (B) of the associated main switch (T1) and whose reference electrode is connected to the reference electrode (E) of the associated main switch (T1). The capacitor (C11) is disposed between the control electrode of the auxiliary switch (T11; T22) and the work electrode (C) of the associated main switch (T1). A discharge unit (D11) is disposed between the control electrode and the reference electrode of the auxiliary switch in such a way that the capacitor (C11) can be discharged during the transition of the main switch (T1) from the OFF state to the ON state.
Abstract:
An integrated ringing access switch circuit for telecommunications switching applications that provides improved dV/dt sensitivity at low operating power by using a pilot controlled rectifier, such as an SCR, that conducts at low ringing signal currents and operates to steer a bias current for causing a relatively larger controlled rectifier in parallel therewith to become conductive during higher load current operation. Also included is circuitry for preventing inadvertent turn-on of the SCRs in response to transient signals.
Abstract:
In a circuit having MOS transistors connected in series, a surge voltage that occurs during off periods is reduced, while suppressing an increase in switching loss at turning off of the MOS transistors. When a first power MOSFET (1) is turned off and then a second power MOSFET (2) is turned on after that according to predetermined timing, the first power MOSFET (1) is temporarily placed in an on state for a predetermined time period synchronized with that predetermined timing. On the other hand, when the second power MOSFET (2) is turned off and then the first power MOSFET (1) is turned on after that according to predetermined timing, the second power MOSFET (2) is temporarily placed in an on state for a predetermined time period synchronized with that predetermined timing.
Abstract:
A semiconductor switching device or amplifier combined in parallel with one or more active devices defined as starter devices. A starter device is used to reduce the terminal voltage of a switching device or amplifier to a dc level below about 0.4 volts which will then allow the switching device to easily change between the on or conducting state and the off or non-conducting state. Three different starter devices are utilized. The first being a Bipolar Junction Transistor (BJT), the second a Metal Oxide Silicon Field Effect Transistor (MOSFET), and the third consisting of three normally off JFETs connected serially. Generally, a single starter device is coupled across the terminals of a semiconductor switching device or amplifier, but it is possible and sometimes advantageous to couple two or more starter devices in parallel. In a first case, a symmetrical, normally off or enhancement mode JFET is used as the switch or amplifier. A starter device coupled between source and drain of the JFET will allow operation at dc voltage levels above 0.4 volts. In a second case, an asymmetrical, normally off JFET is used as the switch or amplifier. A starter device coupled between source and drain of the JFET will allow operation at dc voltage levels above 0.4 volts. In a third case, a normally off MESFET is used as the switch or amplifier. A starter device coupled between source and drain of the MESFET will allow operation at dc voltage levels above 0.4 volts.
Abstract:
A gate control circuit for turning on and off an insulated gate semiconductor device having gate, emitter and collector terminals, including a first DC power source coupled to the gate terminal via a first switch and configured to apply a positive voltage to the gate terminal in order to turn on the insulated gate semiconductor device when the first switch is turned on and the second switch is turned off; a second DC power source coupled to the gate terminal via a second switch and configured to apply a negative voltage to the gate terminal in order to turn off the insulated gate semiconductor device when the second switch is turned on and the first switch is turned off; a parallel circuit of a diode and a capacitor coupled in series to the second switch; and a turn off assist circuit configured to produce a negative charge on the capacitor to assist in turning off the insulated gate semiconductor device. In a power converter circuit having a plurality of insulated gate semiconductor devices, equalization of delay times for turning off the insulated gate semiconductor devices is achieved by controlling a charged stored in the capacitor of each gate control circuit based on detected collector-emitter voltages or detected emitter currents.
Abstract:
A fast high side switch for hard disk drive preamplifiers requires very fast turn on time, very low impedance when the switch is “on” and very high impedance when the switch is turned “off”. Each of the embodiments described provide a low-impedance path between the “Boost Voltage” and “Switch Out” terminals of the hard disk drive preamplifier, i.e., connecting a boost-voltage to the inductor, and as required in such a system, the proposed circuits provide a turn-on time that is much faster than the rise-time of the write current.
Abstract:
A CMOS line driver is made up of p- and nMOS transistors. A pMOS varactor is interposed between the source of the pMOS transistor and a power supply, while an nMOS varactor is interposed between the source of the nMOS transistor and ground. The sizes of each of these MOS varactors may be the same as those of the p- or nMOS transistor. Alternatively, each of these MOS varactors may have a channel area twice greater than that of the p- or nMOS transistor. The inverted version of a signal input to the line driver is supplied to the gates of the MOS varactors. In this manner, the MOS transistors, making up the line driver, can switch at a high speed.
Abstract:
Techniques and circuits for high speed switching of transistors are provided. These techniques and circuits switch an output device while varying the drive current to the output device in proportion to the output current through the output device. In addition, these techniques and circuits provide a switching circuit with substantially no quiescent currents. This is accomplished by sampling the output current conducted by the output device and using the sample as a signal to drive either the output device fully ON or to switch the output device fully OFF.
Abstract:
A pull-down circuit uses an npn transistor operating at close to saturation and the collector/emitter voltage is used as the pull-down voltage. To keep this within strict limits the npn transistor is connected in circuit with other transistors and resistors as well as a current source that generates a current proportional to absolute temperature. By selecting the values of the resistors and transistor parameters the collector/emitter voltage may be kept stable within a small range over wide temperature variation.