Abstract:
A circuit arrangement is disclosed having an odd number of Y-connected frequency converters. The control units of the frequency converters are associated with current regulators, all of which are addressed by an additional common reference value. In accord with the invention, the aforesaid reference value is derived by generating a difference voltage corresponding to the difference of the voltages at the neutral point of the frequency converter circuit and the neutral point of the load. This difference voltage is then passed through a delay member whose time constant corresponds to the time constant of the load to develop the reference value.
Abstract:
Power is fed to a plurality of loads by a respective plurality of circulating current type cycloconverters connected to an ac power supply. A power compensating capacitor common to the cycloconverters is provided at the ac power receiving-end to deliver a leading reactive power to the ac power supply. Further, each cycloconverter is provided with means for delivering a circulating current and means for delivering a circulating current command value to the circulating current control means. A lagging reactive power corresponding to the leading reactive power by the power factor compensating capacitor is delivered to the ac power supply. The power factor compensating capacitor may be configured so that its capacity is variable by changing the number of stages connected. In addition, the circulating current command value may vary depending upon the peak value of the current flowing in each cycloconverter.
Abstract:
The firing pulses to the nonload carrying bank only of the naturally commutated thyristor power circuit of a static power converter are retarded to reduce or eliminate the interbank circulating current. In one form of the invention, half wave rectified load current signals are summed with the output waveform reference signal applied to the positive and negative bank firing pulse generators in a sense to retard the pulses in the nonload carrying bank. In another form of the invention, the inversion end stops are used to generate the retarded firing pulses in the nonload carrying bank.
Abstract:
A current regulator for a variable frequency power supply includes a proportional plus integral circuit that produces a composite control output signal for each phase. To improve the performance of the current regulator at higher frequencies, the composite control output signal for each phase also inlcudes a cross coupled component which is produced by multiplying a d.c. signal proportional to frequency times an integrator output signal from another phase. The composite control signals are applied to a voltage source inverter which produces the output currents to a load.
Abstract:
A control circuit for a main switching transistor in a switching regulator, wherein PWM pulses are produced by varying a DC bias of triangular-wave pulses in response to a detected error signal, and which pulses are provided as a control signal for switching on and off the main switching transistor. In order to reduce power dissipation due to carrier storage at each turn-off operation of the switching transistor, a negative voltage potential is produced by a diode and a capacitor from square-wave pulses of a constant repetition frequency from which pulses the triangular-wave pulses are formed, and is applied to an emitter of an NPN transistor which operates as a variable impedance circuit for varying the DC bias of the triangular-wave pulses in response to the error signal, so that the triangular-wave pulses are biased to a negative voltage potential. Therefore, the base of the switching transistor rapidly drops down to a negative voltage potential at the time of each turn-off operation of the switching transistor, so that the stored carrier is rapidly drawn out of the base of the switching transistor.
Abstract:
In power conversion apparatus such as a naturally commutated cycloconverter for use in converting the output of a variable speed generator to a constant frequency, there is provided an end stop control circuit for ensuring commutation of power switching devices that includes timing wave generators for both rectification and inversion end stops. The timing wave generators are phase locked with the generator outputs but are controllable by end stop bias signal derived from a variable system parameter that may be independent of the source, such as load current to provide prompt protection against converter malfunctions due to excess load currents.Further provided is an excess current detector employing, for each phase, a pair of high slew rate, high current unipolar output op amps connected in a voltage follower configuration with a common pull-up resistor and a common load capacitor to develop a peak current signal representing the greater of the positive and negative peaks of the alternating phase current.
Abstract:
A switching voltage regulator (86) is controlled to produce a low output voltage when the power is first turned on and subsequently to produce a high output voltage after a predetermined length of time has elapsed, thereby eliminating overloads due to initial surge currents.
Abstract:
A circuit to discriminate the source of harmonic distortion of the output voltage comprises voltage sensors coupled to the output terminals of a source of electric power and to a point of regulation remote from the source for sensing the output voltage waveform present at each of these locations. The circuit then utilizes these two sensed waveforms to discriminate the source of any harmonic distortion between the source of electric power and the utlization equipment. This circuit calculates the percentage total harmonic content of each of the sensed waveforms, and compares them to determine the source of distortion. If the percentage total harmonic content sensed at the point of regulation is greater than that sensed at the terminals of the source of electric power, the source of distortion is discriminated to be the utilization equipment; otherwise, the source of distortion is identified to be the source of electric power. The circuit also calculates the actual voltage difference between the two sensed voltages, and senses the current flowing in the feeders which is compared with a profile of the normal voltage drop versus connected load to generate an expected voltage drop. The two voltage difference signals are then compared. The circuit indicates the source of the harmonic distortion as the utilization equipment when the actual voltage difference deviates from the expected drop by greater than a predetermined amount.
Abstract:
A harmonic suppressing device provided in a power system such as, for example, a transmission and distribution system or a power generating system, to filter higher harmonic currents generated by a higher harmonic current source of the power system such as, for example, a cycloconverter. The harmonic suppressing device comprises, as the principal components thereof, a passive filter serving as a high-order higher harmonic filtering unit for filtering higher harmonic currents of comparatively high order among those generated by the higher harmonic current source, and an active filter serving as low-order higher harmonic filtering unit for filtering higher harmonic currents of comparatively low orders among those generated by the higher harmonic current source. The active filter comprises: a main active filtering circuit comprising a plurality of switching transistors, rectifying diodes combined with the switching transistors, respectively, a capacitor, and a reactor; an operating circuit which calculates controlling data for controlling the commutating action of the main active filtering circuit on the basis of the detected values of the higher harmonic currents that flows into the power source side of the power system and the detected values of the output voltage of the higher harmonic current source; and a control circuit which gives control signals such as, for example, pulse width modulating signals to the main active filtering circuit. The harmonic suppressing device is capable of filtering higher harmonic currents in a wide frequency band.
Abstract:
A circulating current of a cycloconverter in each phase is distributed and controlled in such a way that a circulating current in a phase having a large absolute value of a load current is small, and the circulating current of a phase having a small absolute value of the load current is large. Therefore, the reactive power is so compensated that the sum of lagged reactive powers of the phases and advanced reactive power of a phase advancing capacitor cancel out each other.