Abstract:
A power flow controller seeks to inject a voltage V.sub.ser on a transmission path between a first electrical area and a second electrical area, in order to cause a desired power flow into the second electrical area. The power flow controller (20) includes a series transformer (40), a regulating transformer (44), a rotary phase shifting transformer network (44), and a control system (46). The rotary phase shifting transformer network (44) includes a first rotary phase shifting transformer (102.sub.1) and a second rotary phase shifting transformer (102.sub.2). The first rotary phase shifting transformer and the second rotary phase shifting transformer have first terminals (windings of one of either rotors or stators) connected in parallel to a regulating winding 62) of the regulation transformer. Second terminals (windings of the other of rotors or stators) are connected in series with an excited winding (52) of the series transformer. The control system applies control signals to the first rotary phase shifting transformer and the second rotary phase shifting transformer to obtain desired phase angles .theta..sub.E1, .theta..sub.E2 between the rotor (110) and stator (112) of each transformer, and thereby achieve an effective phase shift .theta..sub.PFC and a voltage magnitude ratio T.sub.PFC between the first electrical area and the second electrical area.
Abstract:
A treble frequency converter comprising a stator and a synchronously rotating rotor. The stator is provided with a primary winding connectable to a polyphase alternating current source and a secondary winding from which treble frequency power can be taken, the secondary winding having three times as many poles as does the primary winding. The rotor has the same number of poles as does the primary winding and the rotor poles are shaped so that the air-gap between the stator and rotor poles will serve to produce third harmonic flux waves effectively and economically.
Abstract:
A system and method for power conversion synchronizes multiple phases at a desired phase angle difference. The power conversion involves variable frequency switching, fixed on-time and provides power factor correction. A relative measure of a phase angle difference between two phases permits each phase to be controlled to obtain the desired phase angle difference. The power conversion involves transition mode switching to help reduce switching losses. A phase angle difference detector may be provided for each phase. The various phases may have different inherent frequencies that vary with switching frequency, and are synchronized to an average frequency.
Abstract:
An interconnection system (100) for transferring power between a first grid (22) operating at a first electrical frequency and a second grid (24) operating at a second electrical frequency includes a rotary transformer (102) and a power recovery system (103). The power recovery system (103) recovers and applies to the transferee grid a power differential attributable to mechanical power channeled to a rotatable shaft (113) of the rotary transformer (102).
Abstract:
A rotating field transformer comprises a torque motor and a rotating electric machine having two sets of windings, each of the windings connected to a respective polyphase electric circuit. The two windings have the same number of magnetic poles and generate coincident rotating magnetic fields having the same direction of rotation. When a torque is applied (e.g., to the shaft of a rotor carrying one of the windings) in the same direction as that of the rotating magnetic fields, electric power is transferred from the rotor-connected circuit to the stator-connected circuit. The rotating field transformer can be used to control the frequency at which power is supplied to a polyphase load, or to manage instabilities in weak links between generating stations.
Abstract:
An energy storage system includes a power source configured to generate power. The energy storage system also includes an induction machine coupled to an inertial flywheel, the induction machine configured to receive electrical energy from the power source, store the energy in the flywheel, and deliver a first portion of the energy to a first pulsed load. The energy storage system further includes a damping network configured to receive and absorb a second portion of the energy at a controlled rate to regulate torsional oscillations in a rotary motion of the flywheel caused by load swings or pulsations of the first pulsed load.