摘要:
The invention relates to the field of magnetohydrodynamic generators, and more precisely to such a generator (10) comprising a working fluid flow passage (11) that is defined by a first wall (12) and a second wall (13), an ionizing device (14) for ionizing the working fluid, a pair of arms (15), each connecting together the first and second walls (12, 13) downstream from said ionizing device (14) so as to define, within the flow passage (11), a channel (16) between said arms (15) and said walls (12, 13), said channel (16) being arranged to be traversed by a portion of the working fluid after it has been ionized, a magnet for generating a magnetic field (B) oriented in a direction that is perpendicular to the flow of the working fluid through the channel (16) defined by the pair of arms (15) and said walls (12, 13), and at least one pair of electrodes (17), each of the electrodes (17) in each pair being arranged on a respective side of the channel (16) defined by the pair of arms (15) and said walls (12, 13), said electrodes (17) in each pair being spaced apart from each in a direction that is perpendicular to said magnetic field (B) and to the flow direction of the working fluid through the channel (16) defined by the pair of arms (15) and by said walls (12, 13).
摘要:
Two-phase LMMHD energy conversion systems have potentially significant advantages over conventional systems such as higher thermal efficiency and substantial simplicity with lower capital and maintenance costs. Maintenance of low velocity slip is of importance for achieving high generator efficiency. A bubbly flow pattern ensures very low velocity slip. The full governing equations have been written out, and a computer prediction code has been developed to analyze performance of a two-phase flow LMMHD generator and nozzle under conditions of no slip. Three different shapes of an LMMHD generator have been investigated. Electrical power outputs are in the 20 kW range. Generator efficiency exceeds 71 percent at an average void fraction of about 70 percent. This is an appreciable performance for a short generator without insulating vanes for minimizing electrical losses in the end regions.
摘要:
The electromagnetic machine (1) includes a tubular duct (3 ) intended to receive a conducting material which can circulate in the duct (3) around the core (4) and an inductor (2) arranged coaxially around the duct (3). The inductor (2) includes a magnetic circuit (15) formed by laminated sheet metal combs (18) and windings (14 ) arranged in annular notches (5 ) made in the magnetic circuit (15). The notches (5) are separated from each other by teeth. The teeth of the inductor have lengths in the axial direction which are smaller in the central part of the inductor (2) than in the end parts. The notches (5) are less deep at the ends than in the central part and enclose windings having a smaller number of turns. The windings (14) are each connected to one phase of a polyphase current source.
摘要:
High temperature corrosion and erosion resistant electrodes particularly useful for magnetohydrodynamic generators which electrodes utilize chemical ionization of combustion reactants to diffuse the current flow into the electrode. A combustible fuel, oxidant and electrically conductive material flow through porous, graded electrode components toward the plasma. Catalyzed combustion occurs near the face of the electrode exposed to the plasma which diffuses current transfer in the boundary layer and into the electrode. The reactants and combustion products thus combine simultaneously to cool the inner portions of the electrode, heat the outer portions, protect the exposed electrode surface from erosion, and alleviate the physical or chemical bonding of the by-products of coal combustion to the electrode surface which otherwise results in chemical degradation of the electrode.
摘要:
Ceramic electrode is brazed to compliant support, a plurality of curved metal strips mounted on edge, opposite edges being brazed to cooling block. Compliance permits expansion and distortion of electrode when heated without development of stress damaging to brazed joints or to electrode.
摘要:
Magnetohydrodynamic devices using hot ionized gas as working fluid require channel refractories, insulators, and electrodes to be cooled at their reverse sides in order to carry away heat flux fast enough to keep obverse sides below melting point, since gas temperatures of roughly 2500.degree. C. exceed melting points of any available metals or ceramics. Common procedure of brazing ceramic to metal backing (which is more conveniently fastened in apparatus and cooled) creates only partially solvable problem of differential thermal expansion, or bad fit. Ceramic reverse is grooved with dovetailed or convergent slots against which brazing stock is placed for brazing to metal backing. During brazing, molten braze alloy enters grooves and forms mechanical lock which on test proves stronger than ceramic itself. Large expanses of ceramic may be grooved on obverse to insure that cracks resulting from thermal stress, especially thermal shock, will be regular and subdivide surface into smaller regular units which may still be used.
摘要:
A technique of forming electrodes for magneto-hydrodynamic generators having the composition (La.sub.1.sub.-x Y.sbsb.x ) CrO.sub.3 where Y is strontium, calcium or magnesium and having densities of as high as 97% of theoretical or even higher is provided. Electrodes of such densities offer superior mechanical and electrical properties when employed in magneto-hydrodynamic generators.
摘要:
Improved electrode performance in a magnetohydrodynamic device is obtained with an electrode structure which includes a liquid (molten) portion in electrical contact with the electrically conductive gas stream. The liquid is highly electrically conductive and, when employed as a cathode, it has excellent electron emission characteristics at and These presently employed practical operating temperatures in MHD devices. Tese properties are retained during continuous operation over long periods of time. If both cathode and anode are liquid they may be held in place by rotating the gas flow channel, which supports the electrodes, about its longitudinal axis.