Abstract:
An insulated-gate field-effect transistor adapted to be used in an active-matrix liquid-crystal display. The channel length, or the distance between the source region and the drain region, is made larger than the length of the gate electrode taken in the longitudinal direction of the channel. Offset regions are formed in the channel region on the sides of the source and drain regions. No or very weak electric field is applied to these offset regions from the gate electrode.
Abstract:
The invention includes SOI thin film transistor constructions, memory devices, computer systems, and methods of forming various structures, devices and systems. The structures typically comprise a thin crystalline layer of silicon/germanium formed over a wide range of suitable substrates. The crystalline properties of the silicon/germanium can be controlled during formation of the silicon/germanium so that the material has a relaxed crystalline lattice and large crystalline grain sizes. The crystalline grain sizes can be sufficiently large so that transistor devices formed in association with the thin crystalline material have active regions utilizing only a single grain of the silicon/germanium material. The silicon/germanium material having a relaxed crystalline lattice can be utilized alone in forming channel regions of transistor devices, or alternatively a semiconductor material having a strained crystalline lattice can be provided between the relaxed crystalline lattice and gates of the transistor devices.
Abstract:
In an SOI (Silicon On Insulator) semiconductor device, a first semiconductor layer overlies a semiconductor substrate so as to sandwich an insulating layer, and second and third semiconductor layers with a different conductivity type from the second semiconductor layer are formed on the surface of the first semiconductor layer. At the interface between the first semiconductor layer and the insulating layer, a fourth semiconductor layer with a different conductivity type from the first semiconductor layer is formed. The fourth semiconductor layer includes an impurity of larger than 3×1012/cm2 so as not to be completely depleted even though a reverse bias voltage is applied between the second and third semiconductor layers.
Abstract translation:在SOI(绝缘体上硅)半导体器件中,第一半导体层覆盖在半导体衬底上以夹住绝缘层,并且在第二半导体层的表面上形成具有与第二半导体层不同的导电类型的第二和第三半导体层 第一半导体层。 在第一半导体层和绝缘层之间的界面处,形成具有与第一半导体层不同的导电类型的第四半导体层。 第四半导体层包括大于3×10 12 / cm 2的杂质,即使在第二和第三半导体层之间施加反向偏置电压也不会完全耗尽。
Abstract:
An SOI substrate is formed by bonding first and second semiconductor substrates of p− type through an insulating film interposed in between the substrates. In an SOI layer of a p type at the surface side of the two, a trench isolation region is formed for selecting elements so as to enclose an element forming region by burying a trench made of an oxide film. A MOS transistor having p+ type drain diffusion layer and p− type drain diffusion layer is formed in this element forming region isolated by a dielectric region. A same potential is applied to an electrode connected to the p+ diffusion layer provided outside of the element forming region enclosed by the trench isolation region, and the drain diffusion layer. As a result, without forming an electrode on the back side of the SOI substrate, deterioration of withstand voltage of elements can be prevented.
Abstract:
One aspect of the present subject matter relates to a partially depleted silicon-on-insulator structure. The structure includes a well region formed above an oxide insulation layer. In various embodiments, the well region is a multilayer epitaxy that includes a silicon germanium (Si—Ge) layer. In various embodiments, the well region includes a number of recombination centers between the Si—Ge layer and the insulation layer. A source region, a drain region, a gate oxide layer, and a gate are formed. In various embodiments, the Si—Ge layer includes a number of recombination centers in the source/drain regions. In various embodiments, a metal silicide layer and a lateral metal Schottky layer are formed above the well region to contact the source region and the well region. Other aspects are provided herein.
Abstract:
A simiconductor device includes a simiconductor substrate, an insulating layer, a silicon layer, full depletion type transistors, and partial deletion type transistors. The insulating layer is formed on the simiconductor substrate. The silicon layer has a first region and a second region. The silicon layer is formed on the insulating layer. The full depletion type transistors are used for a logical circuit and are formed on the silicon layer at the first region. The partial depletion type transistors are used for a memory cell circuit and are formed on the silicon layer at the second region. The second region of the silicon layer is maintained at a fixed potential.
Abstract:
A fully inverted type SOI-MOSFET has a channel region 18 constructed of a portion that belongs to a top silicon layer 13 and is located just under a gate electrode 15 and a source region 16 and a drain region 17, which belong to the top silicon layer 13 and are located adjacent to this channel region 18. The channel region 18 is inverted throughout the entire thickness during operation. The source region 16 has a source resistance RS, which satisfies a relation that (1/gm)>RS with respect to the mutual conductance gm of the channel region 18 itself. According to this fully inverted type SOI-MOSFET, the effective mutual conductance (Gm) can be increased.
Abstract:
An insulated-gate thin film transistor comprises a gate electrode and source and drain electrodes. The source and drain electrodes are laterally spaced apart, and are vertically separated from the gate electrode by a gate insulator layer and an amorphous silicon layer. A region of the amorphous silicon layer is vertically aligned with the lateral spacing between the source and drain electrodes defining the transistor channel, and the region of the amorphous silicon layer has a thickness of less than 100 nm, and is doped with phosphorus atoms with a doping density of between 2.5×1016 and 1.5×1018 atoms per cm3. This enables the mobility to be increased so that the thickness reduction of the silicon layer can be tolerated. This thickness reduction enables the photosensitivity of the layer to be reduced sufficiently to avoid the need for a black mask layer.
Abstract:
In a field-effect transistor, one of the distance between a gate electrode and a source electrode and the distance between the gate electrode and a drain electrode which one distance is on a side where a signal of a high frequency is applied is made longer than the other distance on a side where a signal of a low frequency is applied.
Abstract:
A SOI MOSFET 10 may be formed from silicon single crystal as a substrate body that is formed on an embedded oxide film 11. For example, a P-type body 12, a channel section 13, and N-type source region 14 and drain region 15 are formed therein. Low concentration N-type extension regions 18, a gate electrode 17 provided through a gate dielectric layer 16 and sidewalls 19 are formed therein. A body terminal 101 in which a resistance (body resistance) Rb between itself and a body is positively increased is provided, and the body terminal 101 is connected to a source region 14. This structure realizes a SOI MOSFET with a BTS (Body-Tied-to-Source) operation accompanied by a transient capacitive coupling of a body during a circuit operation.