Abstract:
An electron beam-addressed liquid crystal cell for a light valve. The cell (40) includes liquid crystal material (42) sandwiched between two substrates (16, 44). One substrate (44) is addressed by the electron beam (60a, 60b) and includes a coating (51) having a rate of secondary electron emission greater than the characteristic rate of secondary electron emissions of the base layer (49) of the substrate (44). The enhanced secondary electron emission characteristics of the coated substrate (44) permit the cell to be modulated with relatively lower electron beam current for correspondingly higher image resolution.
Abstract:
A laminar flow electron gun (16) for use in a light valve of the Schlieren dark field type is disclosed. The gun uses three accelerating electrodes (111, 112 and 113) with critical axial spacing to beam diameter ratios to allow independent adjustment and/or modulation of beam current density at the imaged aperture while reducing criticality of electrode voltages on the second and third accelerating electrodes. The design permits, but does not require, the use of a separate control grid electrode (110). The first accelerating electrode (111) is closely spaced to the cathode (119) to provide a virtual cathode at, or about, the voltage level of that electrode that reduces the thermal beam spread normally encountered in conventional electron guns. Primary control of the narrow angle beam current is by adjustment of the beam current density impinging on the final aperture (121) in the gun. The interaction of negative and positive electron lenses within the gun retains laminar flow conditions to the final aperture over a wide range of beam current levels, assuring low beam spread in the output beam from the gun.
Abstract:
A color video imaging system utilizing a cathode ray device with a target comprising an array of electrostatically deflectable light valves. The light valve structure and the arrangement of light valves as an array permits sequential activation of the light valves in response to a specific primary color video signal. The light valves are arranged in three element groupings, and a schlieren optical means is provided having respective primary color transmissive portions through which the light reflected from the deflected light valves is passed, to permit projection of a color image upon a display screen.
Abstract:
An electrostatically deflectable light valve adapted for use in an array for producing television pictures as a projected image upon a large display screen. The light valve structure is such that a plurality of reflective wing portions are free to be deflected along directional axes which are at an angle to the prime directional axes of the overall array, so that light which is predominantly diffracted along the array axes may be decoupled or separated from the signal light produced by activated light valves and used to project the image. The contrast ratio of signal light to background light for the system is significantly improved, using this method of discrimination.
Abstract:
Addition of small amounts of substituted anthraquinones to a light-modulating fluid substantially reduces the rate of substrate formation in the fluid thereby substantially increasing its useful lifetime and consequently the useful lifetime of the light valve of the projection apparatus in which the modified fluid is used as the light-modulating medium.
Abstract:
An electron beam addressed electro-optical (EO) light valve (EOLV) having a matrix of openings formed on and extending through an input conductive layer and further extends into an electrically insulating layer. A partially conductive coating is formed on the surface of each opening in the insulating layer, and has a substantially good electrical contact with the input conductive layer. An EO layer, formed of either a liquid crystal (LC) or a solid state EO crystal, is positioned on the optical output side of the insulating layer. Through the openings electrons from a scanning electron beam can reach and be directly deposited on the partially conductive coatings at a depth substantially close to the EO layer and substantially far away from the input conductive layer. The insulating material surrounding the openings in the insulating layer strictly prevents these deposited electrons from inter-opening motion. These deposited electrons are then discharged along the partially conductive coatings to the input conductive layer before the next scanning cycle. Accordingly, a precisely controllable voltage across each pixel of the EO layer can be obtained. This makes it possible to obtain a precisely controllable orientation state of the molecules in each pixel of the EO layer corresponding to the modulation of the scanning electron beam. Thus an EOLV with significantly high resolution, high contrast ratio, fast response speed, high display gray scale and high sensitivity responding to the input modulation can be achieved according to this invention.
Abstract:
A light valve projector of the Schlieren dark field type is provided with an improved input bar plate configuration which achieves greater light efficiencies. The improved input bar plate has orthogonally related rows and columns of slots in which the row slots are spaced between the column slots. Alternating rows of lenslets of a first array divide columns of lenslets of a second array. Light filtering is provided such that one color passes through the row slots and another color passes through the column slots. The output bar plate has a configuration which is complementary to the input bar plate.
Abstract:
A process for the fabrication of a deformographic storage display tube (DSDT) target in which a wafer of silicon or other etchable material is used (1) as a temporary support during the generation of the active region of the target and (2) as a supporting structure for the completed target. The DSDT target structure comprises a reflection layer on a dielectric layer supported in turn on a silicon or other etchable material wafer, the wafer being etched off at its back side to expose the dielectric layer while providing an outer frame support structure made of the wafer around the edge, with the dielectric layer being etched to form pillars of the dielectric on the backside of the reflection layer, whereby the dielectric pillars enable a deformation action to occur in the region between the pillars. An inner frame support structure comprised of a similarly etched wafer, a dielectric layer and a secondary electron emission layer is fitted against the bottoms of the pillars and bonded to the outer frame support structure, thereby forming the completed target.
Abstract:
An optical imaging system which includes a light valve array target for producing the output image, and a photoemissive target which is responsive to input radiation to produce the desired informational pattern which is reproduced in the output stage. The input radiation generates photoelectrons in the photoemissive target and these photoelectrons are used to produce an electrostatic field on the deformable light valve elements.