Abstract:
Provided is an electric switch, including a casing, an actuator, a movable contact frame, a snap-action resilient member, a lock mechanism, a signal switch and a contact switch. The actuator is capable of reciprocating along a first direction. The movable contact frame is provided with a retaining portion. The snap-action resilient member is arranged in the movable contact frame and is compressed by the actuator when the actuator moves. The lock mechanism includes two lock members which are capable of reciprocating in the mounting cavity along a second direction with the movement of the actuator, so as to lock or unlock the retaining portion. A brush of the electric switch is arranged on the movable contact frame. A movable contact of the contact switch is arranged on the movable contact frame.
Abstract:
A switch includes a spring. The switch further includes a collapsing element. The spring has a first state in which it is being held in tension by a restraining element and a second state in which it is not being held in tension because the restraining element has failed. The collapsing element is situated such that when sufficient power is applied to the collapsing element heat from the collapsing element will cause the restraining element to fail. The switch further includes a first contact coupled to the spring. The switch further includes a second contact coupled to the spring. The first contact and the second contact are separate from each other when the spring is in the first state. The first contact and the second contact are electrically connected to each other when the spring is in the second state.
Abstract:
An electrical snap-action switch with a contact link which can be actuated via a switching plunger and a bistable spring and which is connectable in a first switching position to at least one first contact pair and in a second switching position to at least one second contact pair. The spring arrangement on both sides of the switching plunger has at least one spring arm, via which the contact link is movable transversely with respect to the movement direction of the switching plunger up to a movement end position in the event of breakage of one of the spring arms. A sliding ramp is provided in the movement path of the contact link, which sliding ramp spaces apart at least one contact of the contact link in the movement end position from the associated contact of the respective contact pair in the event of breakage of one spring arm.
Abstract:
An electrical switching apparatus, such as a subminiature circuit breaker, includes a housing assembly, separable contacts, an operating mechanism having an actuator device and a latching assembly, a first trip device for tripping open the separable contacts in response to an overcurrent condition, and a second trip device for tripping open the separable contacts in response to an arc fault, a ground fault or a remotely transmitted signal. The subminiature circuit breaker includes a reset solenoid and a trip solenoid. The resent solenoid is coupled to the actuator device, and includes a coil operable to electrically reset the separable contacts. The trip solenoid is coupled to the latching assembly, and includes a coil operable to move the catch lever, thereby electrically tripping open the separable contacts.
Abstract:
In order to form a tensioning apparatus for a switch-on energy store of a circuit breaker, in which apparatus a tensioning shaft, which can rotate by means of a drive wheel, for tensioning the switch-on energy store is fixedly connected in each case to a cam and to a cam disc, which apparatus has a tripping stop, in which apparatus the drive wheel is coupled to the tensioning shaft via a clutch, and which apparatus has a simple and at the same time cost-effective design, the invention proposes that the clutch is a ratchet arrangement.
Abstract:
A modular cost-effective drive system for electrical switching devices of medium-voltage installations is specified. The drive system, by the addition or omission of individual components, can be used both as a three-position disconnector with a snap-action or storage drive function and as a two-position circuit breaker which can also be expanded by a brief interruption function.
Abstract:
A closed loop feedback system controls electrical switchgear that moves at least one contact relative to another contact to switch power on and off in an AC electrical circuit. The control system includes a position feedback device that is operatively coupled to at least one of the two contacts to produce contact position information. A processor receives and analyzes the contact position information to control contact motion to provide AC waveform synchronized switching. The electrical switchgear may be a capacitor switch that includes a bi-stable over-toggle latching device. The latching device maintains the contacts in one of an open stable position in which electrical current does not flow through the contacts or a closed stable position in which electrical current flows through the contacts.
Abstract:
A snap acting switch comprising an elongate cantilever mounted spring member having a contact portion, an electrically conductive element upon which the contact portion bears, and an actuator having surfaces intersecting at an angle, one of the surfaces bearing on the spring member. The switch is actuated by causing the spring member to approach and pass over the intersection of the surfaces, which causes the bearing pressure of the contact portion to increase before the snap action occurs.
Abstract:
A microswitch comprises stationary contacts (2,3) mounted on an insulating base (1), a four-link system (5) of levers which is made in the form of a chain including connected to each other in series an actuating link (8), two middle links one of which being a contact link (10) and the other one being an intermediate link (11) and a support link (9), and a limit stop (6) for holding one of the middle links (10 or 11) in the end positions. The actuating link (8) and the support link (9) being the end links are mounted for rocking on the insulating base (1), and one of the middle links, viz. the contact link (10) carries a movable contact alternately interacting with the stationary contacts (2,3). According to the invention, the movable contact (4) is located on the end of the contact link (10) connected with the intermediate link (11), and the limit stop (6) is located close to the place of connection of one of the middle links (10 or 11) with the support link (9).
Abstract:
A snap acting electrical switch in which a frame carries first, second and third wireform contacts and a plunger movable along a first axis. The first and second wireform contacts are biased together along a second axis transverse to the first axis, and are also biased against an end of the plunger. The first and second wireform contacts together are adapted to be deflected along the second axis by a cam surface on the housing as the plunger is depressed. As the second contact is caused to slide off the end of the plunger, it snaps against the third wireform contact which is in a fixed position along side the plunger.