Magnetic structures for low leakage inductance and very high efficiency

    公开(公告)号:US11763984B2

    公开(公告)日:2023-09-19

    申请号:US17845609

    申请日:2022-06-21

    Inventor: Ionel Jitaru

    CPC classification number: H01F30/06 H01F27/245

    Abstract: A magnetic and electrical circuit element including magnetic-flux-conducting posts, and a multi-layer structure formed with an electrically-conductive material. The multi-layer structure includes multiple layers forming a stack of layers along a length of the posts, said multi-layer structure configured as primary and secondary windings of a transformer. The primary winding is embedded in the multi-layer structure and wound around the magnetic-flux-conducting posts in such a way that a magnetic field induced in each of the magnetic-flux-conducting posts has a magnetic field polarity opposite to a polarity of the respective magnetic field of the magnetic-flux-conducting post adjacent the respective magnetic-flux-conducting post. Around each of the magnetic-flux-conducting posts, there is a respective one of the secondary windings connected to a semiconductor device. The magnetic-flux-conducting posts are connected magnetically by continuous magnetic-flux-conducting plates, each of which is shaped to ensure a continuous flow of the magnetic field successively through adjacent magnetic-flux-conducting posts.

    Magnetic structures for low leakage inductance and very high efficiency

    公开(公告)号:US11367565B2

    公开(公告)日:2022-06-21

    申请号:US17189096

    申请日:2021-03-01

    Inventor: Ionel Jitaru

    Abstract: A magnetic and electrical circuit element including magnetic-flux-conducting posts, and a multi-layer structure formed with an electrically-conductive material. The multi-layer structure includes multiple layers forming a stack of layers along a length of the posts, said multi-layer structure configured as primary and secondary windings of a transformer. The primary winding is embedded in the multi-layer structure and wound around the magnetic-flux-conducting posts in such a way that a magnetic field induced in each of the magnetic-flux-conducting posts has a magnetic field polarity opposite to a polarity of the respective magnetic field of the magnetic-flux-conducting post adjacent the respective magnetic-flux-conducting post. Around each of the magnetic-flux-conducting posts, there is a respective one of the secondary windings connected to a semiconductor device. The magnetic-flux-conducting posts are connected magnetically by continuous magnetic-flux-conducting plates, each of which is shaped to ensure a continuous flow of the magnetic field successively through adjacent magnetic-flux-conducting posts.

    72-pulse AC-DC converter for power quality improvement

    公开(公告)号:US10720854B2

    公开(公告)日:2020-07-21

    申请号:US15224697

    申请日:2016-08-01

    Abstract: A novel 72-pulse AC-DC converter based on a 36-pulse converter is designed and implemented in this invention. Combining the outputs of two parallel 18-pulse diode bridges, consisting of nine legs of diode rectifiers, results in a 36-pulse topology. A zero sequence blocking transformer (ZSBT) is designed and applied to the proposed scheme guarantying the independent operation of the two bridges. To achieve a 72-pulse output, a pulse doubling circuit is applied which is inherently a tapped inter-phase transformer. A polygon-connected autotransformer platform is designed and added to the converter, making the proposed scheme suitable for retrofit applications. The proposed solution is a tradeoff among the pulse number, the transformer platform, the complexity of the scheme and the cost. The proposed scheme has an optimized configuration in this regard. The simulation results show that the proposed scheme improves the power quality indices.

    72-PULSE AC-DC CONVERTER FOR POWER QUALITY IMPROVEMENT

    公开(公告)号:US20200052574A1

    公开(公告)日:2020-02-13

    申请号:US15224697

    申请日:2016-08-01

    Abstract: A novel 72-pulse AC-DC converter based on a 36-pulse converter is designed and implemented in this invention. Combining the outputs of two parallel 18-pulse diode bridges, consisting of nine legs of diode rectifiers, results in a 36-pulse topology. A zero sequence blocking transformer (ZSBT) is designed and applied to the proposed scheme guarantying the independent operation of the two bridges. To achieve a 72-pulse output, a pulse doubling circuit is applied which is inherently a tapped inter-phase transformer. A polygon-connected autotransformer platform is designed and added to the converter, making the proposed scheme suitable for retrofit applications. The proposed solution is a tradeoff among the pulse number, the transformer platform, the complexity of the scheme and the cost. The proposed scheme has an optimized configuration in this regard. The simulation results show that the proposed scheme improves the power quality indices.

    Autotransformer rectifier unit
    9.
    发明授权

    公开(公告)号:US10199161B2

    公开(公告)日:2019-02-05

    申请号:US15433241

    申请日:2017-02-15

    Abstract: The present improvement essentially integrates a DC link inductance within an interphase power transformer (IPT). The integration is achieved by creating auxiliary magnetic paths for leakage inductance inside the IPT core. The magnetic path can be created, for example, by incorporating extra portions of magnetic material commonly referred to hereinafter as shunts. The IPT flux shared between windings does not cross these shunts. Therefore, this magnetic path increases the self-inductance of the IPT but does not contribute to the mutual inductance between windings. This extra magnetic path allows for leakage inductance of a much higher quantity than that achievable with a conventional IPT.

    Symmetrical step-up and step-down autotransformer delta topology

    公开(公告)号:US09601258B2

    公开(公告)日:2017-03-21

    申请号:US14328937

    申请日:2014-07-11

    Abstract: A multi-phase autotransformer (10) is disclosed. The exemplary transformer includes primary windings PWA, PWB, PWC) and secondary windings (SWA1-SWA4, SWB1-SWB4, SWC1-SWC4). The primary windings are connected in a delta configuration and to a three-phase input voltage source. Each secondary winding is electrically connected to a primary winding but is magnetically coupled to a different primary winding. Three sets of secondary windings provide three three-phase outputs (350A, 350B, 350C), each of which has a voltage which is less than the three-phase input voltage, the three-phase output of each set being phase-shifted with respect to the other sets. These three sets also, collectively, provide a multi-phase output (325). Another set of secondary windings, in conjunction with the input voltage, provides another multi-phase phase output (360) which has approximately the same voltage as the three-phase input voltage.

Patent Agency Ranking