Abstract:
A fluid flow meter is described, that includes intermeshing gears that may rotate synchronously. The fluid flow meter may produce a pulsed output that can be normalized to suitable values according to a method of normalizing input pulses generated in response to the rotation of gears. A volume counter can be incremented by an amount equal to a volume per input pulse each time an input pulse is generated. When the volume counter exceeds a first reference volume, a normalized output pulse can be generated until the volume counter exceeds a second reference volume.
Abstract:
A system for measuring temporally resolved through-flow processes of a fluid. The system includes an inlet, a main line comprising a line section, an outlet fluidically connected with the inlet via the main line, a displacement device arranged in the main line, a circuitous line which branches off the main line between the inlet and the displacement device and to enter the main line between the displacement device and the outlet, a pressure difference transducer arranged in the circuitous line, an evaluation and control unit which controls the displacement device, and a bypass line comprising a pump and a sensor. The bypass line branches off from the main line or from the circuitous line and ends at a same side of the displacement device and the pressure difference transducer to bypass the line section or the circuitous line from which the bypass line branches off.
Abstract:
A performance inspection system for an array ultrasound transducer includes: a driver for selectively applying an electric signal to all or some parts of constituent channels of the array ultrasound transducer; an acoustic power measurement unit for measuring an ultrasound acoustic power emitted from individual channels receiving the same voltage from the driver; a radiation conductance conversion unit for measuring a voltage signal applied to each channel although the driver applies different voltages to the individual channels, and converting the measured voltage into an ultrasound acoustic power acquired when the same voltage is applied to the channels; and a channel uniformity estimation unit for estimating uniformity of the acoustic power value acquired by the radiation conductance conversion unit or uniformity of acoustic power values of the individual channels measured under the same voltage.
Abstract:
A liquid flow meter is disclosed including a compartment enclosure formed from an upper case part and a lower case part, the lower case part containing a volumetric measuring container having a specified fluid volume capacity, mounted upon a rotatable pivot having an axis of rotation and having a counterbalance weight. The axis of rotation of the volumetric measuring container being determined by location of said rotatable pivot. The moment created by the counterbalance weight about the axis of rotation maintains the static filling rotational position until the specified volume capacity is achieved. An influent port is formed in the upper case part for directing liquid flow approximately vertically into the approximate center of said volumetric measuring container. The lower case part has a sloped bottom and flumage to receive flow discharge of the volumetric measuring container and directs the liquid volume to an effluent port.
Abstract:
A water meter has a measurement insert disposed in a meter housing, a measurement display, an intake connection and a discharge connection. An impeller is disposed on a shaft in a measurement insert housing, and a first shaft end of the shaft interacts with the measurement display. A supporting part is disposed between the meter housing and the measurement insert housing. Because of the supporting part, forces, acting in the axial direction of a second shaft end of the shaft through the measurement insert housing, can be absorbed and the forces can be conducted into the meter housing.
Abstract:
A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.
Abstract:
A fluid flow meter comprising a housing having a pair of fluid ports and defining therebetween a fluid flow path; a flexible membrane defining a pair of opposing faces and being mounted in the fluid flow path such that the pair of faces simultaneously define with the housing fluid impermeable seals at at least two different locations along the flow path, the membrane being operative to flex so as to permit passage therepast of discrete quanta of fluid, each having a known volume; apparatus for generating electrical signals corresponding to flexure of the membrane; and monitoring apparatus for receiving the electrical signals and thereby determining a fluid flow rate along the flow path.
Abstract:
A device to digitally meter, monitor and collect liquid, such as urine, from a catheterized patient. As such it is the successor to and improvement upon U.S. Pat. No. 3,769,497. An optional part prevents the migration of bacteria from the monitoring and collecting devices to the patient's body cavity. The device comprises a plurality of uniquely shaped movable containers that empty their contents when filled to a predetermined volume, a catheter for delivering liquid to the containers, movement sensors for detecting container movement to determine the amount of fluid collected, patient isolating means for electrically isolating the sensors from the patient while delivering movement signals to the sensors, a final collection container for receiving liquid from the movable containers, supports for supporting the device, and controls and alarms for indicating an alarm condition.
Abstract:
A measuring device is provided for measuring a mass flow composed of bulk material, in particular grain, in a continuous, circulating conveyor enclosed in part by a housing, having planar conveyor elements, which conveys the bulk material from a lower bulk material receiving area to a higher bulk material delivery area. A substantially circular movement course is imposed on the bulk material delivered by the respective conveyor element in a substantially radial direction of an inner surface of a cover section of the housing by a guide surface formed in the upper region of the conveyor. The bulk material is deflectable toward a sensor surface of the measuring device. At least the sensor surface of the measuring device is disposed in the upper region of the conveyor such that there is a tangential course in the transition from the guide surface to the sensor surface.
Abstract:
A pipeline apparatus has a body configured to fit inside a pipeline. A flow channel is formed within the body and includes an inlet, an outlet, and a bypass channel connecting the inlet and the outlet, the inlet being configured to receive a portion of a fluid flowing through the pipeline, and the outlet being configured such that the fluid flowing through the bypass channel flows out of the bypass channel through the outlet. A flow control valve is attached to the body and has a sleeve configured to move to vary a flow rate of the fluid flowing out of the outlet. A motor is provided in a chamber in the body and is configured to move the sleeve.