Abstract:
A projectile launching apparatus for cleaning the inner surface of a tube by forcing a projectile through the tube, comprising: a main body containing a breech chamber terminating in an exit port, wherein the breech chamber is provided with a loading port in a side thereof for radially loading a projectile into the breech chamber; a slide disposed on an exterior surface of the main body, the slide being axially movable between a first position wherein the loading port is exposed for loading of a projectile into the breech chamber and a second position wherein the loading port and the breech chamber are sealed; a gas gun operatively connected to the main body in pneumatic communication with the breech chamber; and an exit nozzle connected to the exit port and being connectable to a first end of the tube to be cleaned.
Abstract:
Methods and apparatus for performing repair operations using an unmanned aerial vehicle. The methods are enabled by equipping the UAV with tools for rapidly repairing a large structure or object (e.g., an aircraft or a wind turbine blade) that is not easily accessible to maintenance personnel. In accordance with various embodiments disclosed below, the unmanned aerial vehicle may be equipped with an easily attachable/removable module that includes an additive repair tool. The additive repair tool is configured to add material to a body of material. For example, the additive repair tool may be configured to apply a sealant or other coating material in liquid form to a damage site on a surface of a structure or object (e.g., by spraying liquid or launching liquid-filled capsules onto the surface). In alternative embodiments, the additive repair tool is configured to adhere a tape to the damage site.
Abstract:
A projectile launching apparatus for cleaning the inner surface of a tube by forcing a projectile through the tube, comprising: a main body containing a breech chamber terminating in an exit port, wherein the breech chamber is provided with a loading port in a side thereof for radially loading a projectile into the breech chamber; a slide disposed on an exterior surface of the main body, the slide being axially movable between a first position wherein the loading port is exposed for loading of a projectile into the breech chamber and a second position wherein the loading port and the breech chamber are sealed; a gas gun operatively connected to the main body in pneumatic communication with the breech chamber; and an exit nozzle connected to the exit port and being connectable to a first end of the tube to be cleaned.
Abstract:
Apparatus for projecting bullet shaped additive materials into molten steel. The apparatus has two hoppers for holding the bullet-shaped additive materials and delivering them successively. A pair of rotary feeders having spaced elongated grooves receive the materials supplied from the hoppers and are rotated intermittently a distance corresponding to the pitch of the elongated grooves through use of a Geneva gear mechanism. A gas controlling device connected to a source of gas under pressure controls the supply of gas synchronously with the rotating motion of the rotary feeders to supply the gas to a pair of projectile guiding pipes which shoot the bullet shaped additive materials into a molten steel bath.
Abstract:
A projectile launching apparatus for cleaning the inner surface of a tube by forcing a projectile through the tube, comprising: a main body containing a breech chamber terminating in an exit port, wherein the breech chamber is provided with a loading port in a side thereof for radially loading a projectile into the breech chamber; a slide disposed on an exterior surface of the main body, the slide being axially movable between a first position wherein the loading port is exposed for loading of a projectile into the breech chamber and a second position wherein the loading port and the breech chamber are sealed; a gas gun operatively connected to the main body in pneumatic communication with the breech chamber; and an exit nozzle connected to the exit port and being connectable to a first end of the tube to be cleaned.
Abstract:
A muzzle exit tester system comprises a barrel having an input end and an exit end, a shock plunger freely movable within the barrel, and a shock plate having a first side that faces the exit end of the barrel. A support isolation structure resiliently supports the shock plate, and receives a portion of the barrel that includes the exit end of the barrel. A pneumatic shock apparatus is operatively coupled to the input end of the barrel. The pneumatic shock apparatus is configured to retract the plunger in the barrel via a vacuum while producing a gas pressure charge, and subsequently release the gas pressure charge, such that the plunger accelerates to the exit end of the barrel and impacts the shock plate. The shock plate is configured to resonate at frequencies and amplitudes corresponding to a shock condition of a gun muzzle exit when impacted by the plunger.
Abstract:
An air cannon has a pressure vessel, a discharge valve, and a discharge tube assembly. The discharge tube assembly comprises a fluid passageway and a blast guard valve. The discharge valve is capable of opening and closing and allows pressurized gas to be discharged from the pressure vessel into the fluid passageway of the discharge tube assembly only when open. The blast guard valve is capable of opening and closing and obstructs the fluid passageway of the discharge tube assembly when closed. The blast guard valve allows gas to pass through the fluid passageway when open. The discharge valve and the blast guard valve are operatively connected to each other in a manner such that the discharge valve can open only when the blast guard valve is open.
Abstract:
An explosive charging apparatus for charging explosive pellets to a bore drilled in a rock. The apparatus includes a body having coaxial pellet guiding first and second bores, the second bore being provided with a pellet supplying port. A cylinder is provided and has a piston with its rod extending into the second bore to force the pellet therein when the rod is advanced under an air pressure supplied to the cylinder. The rod is formed with an axial air passage opened to the second bore and adapted to be connected with a pressurized air source when the rod is advanced so as to supply air pressure to the second bore to thereby drive the explosive pellet to the first bore. The first bore is supplied with a lower air pressure which functions to feed the pellet in the first bore to the bore in the rock. The cylinder is associated with a pilot operated valve which receives a returning pilot pressure when the piston is fully advanced and an advancing pilot pressure when the piston is fully retracted.