Abstract:
Disclosed is a combustion machine, including: a hopper, a drying mechanism and a combustion mechanism. The hopper is configured for storing materials and conveying the materials to the drying mechanism. The drying mechanism includes a conveying mechanism and a drying chamber, and the conveying mechanism is connected with the hopper and conveys the materials in the hopper to the drying chamber. The combustion mechanism includes a combustion chamber connected with the drying chamber via a material conveying pipeline, and a fire outlet pipe arranged in the combustion chamber and used for outputting flame. A hot air pipeline is connected between the combustion chamber and the drying chamber, and a first exhaust fan is arranged in the hot air pipeline.
Abstract:
A coal combustion process is described using cleaned coal and processed biomass to reduce adverse by-products in a coal combusting apparatus including the reduction of carbon dioxide by at least 50 volume %. The coal feedstock comprises an aggregate blend of cleaned coal and processed biomass. The biomass feedstock comprises processed biomass pellets. The total energy density is predetermined and can be similar to the coal component or higher than the coal component. The intracellular salt in the processed biomass is at least 60 wt % less for the processed organic-carbon-containing feedstock used to make the processed biomass pellets than that of the starting un-processed processed organic-carbon-containing feedstock. The cleaned coal has a sulfur content that is 50 wt % less than that of un-cleaned coal before it passed through the coal-cleaning sub-system.
Abstract:
The present invention relates to a method for operating combustion process in a furnace whereby a primary fuel and a secondary fuel are burnt, to an apparatus for injecting liquid oxygen into the furnace and also to the corresponding furnace. The method comprises at least the following steps: the primary fuel and a primary oxidizer are injected into the furnace to create a primary combustion zone, liquid oxygen is injected in as secondary oxidizer such that the secondary fuel combusts with the secondary oxidizer thereby creating a distinct secondary combustion zone. The invention makes it possible for a secondary fuel having a significantly lower calorific value than the primary fuel to be burnt completely in the furnace, such that a product to be produced in the furnace has an improved quality.
Abstract:
A method and system for fueling of a burner in a direct-fired device using syngas. A gasifier produces syngas from a carbonaceous feedstock such as biomass. The syngas is fed to a syngas burner. A booster burner disposed between the gasifier and the syngas burner increases the temperature of the syngas. The booster burner may be provided with an approximately stoichiometric or sub-stoichiometric amount of oxidant. Operation of the booster burner may be regulated based on the temperature of the syngas. The syngas burner may be used to direct-fire a device requiring a relatively high flame temperature, such as, for example, a lime kiln.
Abstract:
Described is an integrated process of cogasifying an engineered fuel, formulated to be suitable for working under reducing environment, with coal and cofiring another engineered fuel, formulated to be suitable for working under oxidizing environment, with coal to produce electric power.
Abstract:
This invention relates to a boiler (1) drying, igniting and combusting refuse and producing steam (2, 2a) by heat exchange with flue gases (3). Said boiler (1) comprises a reactor (16) with firing a secondary fuel (18) for generating a less-corrosive gas flow (6) and an end superheater (8) located in the flow (6) of said less-corrosive gas. Said reactor (16) could be a sintering reactor, a rotary kiln, a fluidised bed or a spouted bed. This provides for an increased lifetime of the end superheater and makes the boiler provide a high and efficient electrical power output.
Abstract:
A process for incinerating combustible materials including the steps of: delivering combustible material and inlet gases to a primary combustion chamber, the inlet gases having an oxygen content of at least 50 vol %; burning the combustible material with the oxygen of the inlet gases in the primary combustion chamber producing flue gases and solid particulates as thermal decomposition products of the burnt combustible material; passing the flue gases and particulates to a secondary combustion chamber where further combustion occurs; cooling the flue gases exiting the secondary combustion chamber; returning a portion of the cooled flue gases to at least one of the combustion chambers where the cooled gases moderate the temperature in the at least one chamber; and passing the remaining portion of cooled flue gases on to a flue gas purification system where pollutants in the flue gases and particulates are substantially converted to benign compounds or removed entirely before the flue gases are emitted into the atmosphere.
Abstract:
In a vertical refuse incinerator for incinerating wastes according to the present invention, an incinerator body 1 is made up of an upper cylindrical part CP and a lower funnel part FP covered by a cooling case, and an exhaust gas mixing device 4 promoting the mixing and secondary combustion of combustion gas stream CG is provided between a flame zone FZ and a re-combustion chamber 45. On the other hand, completely incinerated bottom ash is discharged below the incinerator body 1 by the opening and closing operations of a bottom ash discharge device DD by cooled refuse supporting means RS and bottom ash discharge plates 35.
Abstract:
According to a conventional method for incinerating organic waste material, a fluidization device causes an oxygenous fluidizing gas to flow through the waste material, which is located in an incineration chamber, from underneath while forming a fluidized particle layer and the waste material is incinerated. The resulting flue gas is withdrawn via an open space situated above the particle layer and is subjected to a secondary incineration in a secondary reaction zone or secondary incineration chamber. Expanding upon the prior art, the aim of the invention is enable a high throughput for the incineration material while resulting in a low level of nitrogen oxide production, and to increase the productivity for the incineration of organic waste material. To these ends, the invention provides that the fluidized particle layer (3) is concentrated with oxygen in such a manner that a mean oxygen content ranging from 0-3 vol. % is set in the open space (6).
Abstract:
The invention relates to a method for processing waste or biomass material into valuable products such as, for example, combustible gases, which is characterized in that(a) the waste or biomass material is subjected to a pyrolysis at a temperature of 350-650.degree. C., advantageously 450-550.degree. C.;(b) the gas released in the course of the pyrolysis is subjected--without condensation--to a cracking treatment at a temperature of 1100-1600.degree. C., advantageously 1200-1400.degree. C., under the influence of oxygen-rich gas introduced from outside and possibly of steam;(c) the residue liberated in the course of the pyrolysis is gasified under a pressure of 0.5-1.5 bar, advantageously 0.8-1.2 bar, at a temperature of 1200-1700.degree. C., advantageously 1400-1600.degree. C., and is volatilized or, as the case may be, fused under reducing conditions;(d) the fused slag or metal concentrate obtained under stage (c) is discharged or, as the case may be, recovered;(e) the product gases obtained in the course of stages (b) and (c) are combined or not combined and then subjected to gas cleaning.