Abstract:
The invention provides a ball screw device having high strength against a repetitive load and improved durability, which is assembled in an electric actuator, by absorbing a bending force by a simple method and making loads in the axial direction uniformly act on balls constructing the ball screw device. In the ball screw device, a ball nut is slid in the axial direction by rotation of a ball screw shaft to convert rotational motion of a motor to linear motion. An outer peripheral surface of the ball screw shaft and an inner peripheral surface of the ball nut are made in contact with each other, balls are disposed between the ball screw shaft and the ball nut, and openings at both ends of a circulating tube for circulating the balls in the device are disposed so as to be off from heavy load regions in which a load heavier than loads in other portions among loads acting on the balls is applied, thereby absorbing a bending force applied to the ball screw device.
Abstract:
A ball screw assembly includes a ball nut or a ball screw having internal or external, respectively, helical curves, wherein two adjacent turns of the helical curves are joined by a crossover/crossunder path, wherein ends of the crossover/crossunder path and ends of the helical curves are integrally joined without interruption. A ball screw assembly may further include crossover/crossunder paths which are staggered about the screw or the nut.
Abstract:
A ball screw mechanism has an opposing thread provided by an integral male thread formed at one end of a nut received on the screw. The male thread is of a smaller form than the female thread on the screw so as to not normally be in contact therewith, but should ay loss of the balls occur with the resultant slight relative axial shift of the screw and nut, the male threads engage to limit such relative axial movement to protect connected equipment. Both the nut male and female threads may be machined from a cylindrical nut blank.
Abstract:
The ball screw comprises a shaft including a spiral-shaped shaft groove having a semicircular-shaped (Gothic-arch-shaped) section, a nut including a spiral-shaped nut ball groove which corresponds to the shaft groove and has a semicircular-shaped (Gothic-arch-shaped) section, a large number of balls rotatably fitted into between the nut ball groove and shaft groove in such a manner that they are held by and between these two grooves, and a circulation member capable of defining a ball circulation passage for allowing the balls to circulate endlessly therethrough, wherein a portion of the nut ball groove is formed larger in the effective diameter than the remaining portions of the nut.
Abstract:
The invention relates to a ball screw device in which a screw shaft and a nut member are threadedly engaged with each other through a number of balls. In such a ball screw device, an inner surface of a cover plate contacting an end surface of a nut main body is provided with a projecting return piece adapted to be fit-engaged with a recess cut in an inner peripheral surface of the nut main body, the return piece being provided with a scoop portion for dislodging the balls from the ball rolling groove of the screw shaft and a direction switching passage for guiding the dislodged balls to the entrance of a ball return hole. The projecting return piece is divided into a first piece formed integral with the cover plate and a second piece fixed to the first piece by a curved plane including the center line of the direction switching passage.
Abstract:
A ball screw device comprises a nut having a thread groove in the inner peripheral surface thereof, a screw shaft having a thread groove in the outer peripheral surface thereof and a plurality of balls interposed between the respective thread grooves. In the screw shaft, the thread groove is of at least substantially one turn. In the screw shaft is provided a ball circulation groove for coupling the downstream and upstream sides of the thread groove so that the balls are returned to the upstream side from the downstream side so as to be thereby circulated.
Abstract:
A ball screw mechanism comprises a nut, a screw shaft, plural balls and a deflector. The balls are arranged between a first thread groove which is formed on an inner surface of the nut and a second thread groove which is formed on an outer surface of the screw shaft. The deflector comprises a deflector piece which defines a top plate of a ball-return path and a guide member which defines sidewalls of the ball-return path. The ball-return path returns the balls so as to circulate endlessly. As a manufacturing method of the ball screw device, the deflector piece is attached to the nut first. Next, the first thread groove is ground together with an inner surface of the deflector piece. After that, the guide member is attached to the nut. At last, the balls and the screw shaft are assembled to the nut.
Abstract:
A ball screw comprises a screw shaft, a nut assembled with the screw shaft, a number of balls disposed in the ball rolling passage formed by a ball rolling groove formed to the screw shaft and a loaded ball rolling groove formed to the nut, a number of spacers disposed between the balls in the ball rolling passage, and a circulation member for circulating the balls and spacers in accordance with a relative motion of the nut with respect to the screw shaft. The circulation member is provided with a scoop-up groove for scooping the balls, when contacting the ball rolling in the ball rolling passage, at both side edge portions of the scoop-up groove and is also provided with a spacer scoop-up portion which contacts and scoops the spacer moving in the ball rolling passage without contacting the balls. Such circulation member will be preferably utilized for a motion guide device such as linear motion guide or spline shaft.
Abstract:
A ball screw has a screw shaft including a spiral-shaped ball rolling groove formed in an outer peripheral surface thereof; a nut including a spiral-shaped ball rolling groove formed in an inner peripheral surface thereof; a plurality of balls disposed in a raceway formed by the two rolling grooves; and, a return path for moving the balls from the terminal point of the raceway to the start point of the raceway, the two end portions of the return path respectively including a rising surface rising from the ball rolling groove of the nut and a stopper portion disposed opposed to the rising surface to form the end portion of the raceway, wherein a boundary portion between the rising surface and the ball rolling groove of the nut is formed a round portion having the radius of curvature 0.05 times the diameter of the ball or more.
Abstract:
A screw device having a lubricant applying structure comprises a screw shaft provided with a spiral ball rolling groove, a nut provided with a loaded ball rolling groove having a spiral shape corresponding to the spiral ball rolling groove formed to the screw shaft, a number of balls disposed in a loaded rolling passage formed by the ball rolling groove and the loaded ball groove, a return member provided for the nut and arranged so as to connect one and another end portions of the loaded rolling passage so that the balls rolling the loaded rolling passage circulate, and a lubricant applying portion mounted to the return member so as to apply a lubricant. The lubricant applying portion is arranged inside the return member provided for the nut.