Abstract:
A deployable cellular structure providing impact energy absorption capability is disclosed. The structure may be packed when not in use and deployed automatically or manually to provide impact protection. The structure is useful in a variety of situations including vehicular protection of occupants, deployable highway safety barriers, and aviation emergency safety devices.
Abstract:
An object of the present invention is to provide an impact energy absorber which is easy to manufacture and low in cost and absorbs high impact energy. The impact energy absorber consists of an aggregate formed by lapping a kraft paper on the outside and inside of a metal sheet such as a hard aluminum foil, and is a flexible pipe having a circular cross-sectional shape and formed with concave and convex portions in a spiral form on the surface thereof. The outside diameter of the impact energy absorber is 20 to 50 mm, the pitch of the concave and convex portions is 1.4 to 2.0 mm, and the vertical width of the concave and convex portions is 2.3 to 3.2 mm. Energy is absorbed by plastic deformation in the radial direction of the energy absorber.
Abstract:
A side impact beam for incorporation into the structure of a motor vehicle comprises a sheet metal profile with flaring end portions and two longitudinal beads extending along the sheet metal profile and wherein the end portions that are provided with cross beads that are stamped in an additional tooling step during manufacturing and after the longitudinal beads have been formed, and are arranged in transverse disposition to the longitudinal beads and wherein the longitudinal beads and the cross beads are oriented in the same direction and the length of one cross bead corresponds approximately to the width of the two longitudinal beads, such that the so configured cross beads provide a stabilizing effect of the end portions and ensure the flattening of the connecting surfaces, thereby leading to a reduction of assembly problems.
Abstract:
A crash cushion including a side portion extending in a longitudinal direction and having an outer surface defined at least in part by a plurality of convex cambered portions. At least one deflector skin has an inner surface, an outer surface, a leading edge and a trailing edge. The deflector skin is mounted to the outer surface of the side portion in an overlying relationship with at least one of the convex cambered portions.
Abstract:
A corrugated ribbon assembly for absorbing energy from an impact. The assembly includes a corrugated ribbon that is embedded in a stabilizing foam. The corrugated ribbon has two sides that define an energy absorbing wall which extends between a first impact edge of the ribbon and a second impact edge of the ribbon. The wall undergoes buckling to absorb energy when the first or second edge is impacted in a direction that is substantially parallel to the wall. The foam provides structural support for the ribbon during buckling thereof.
Abstract:
An energy absorbing device for a collapsible steering column has a plurality of plastically deformable straps each with one end connected to the steering column and an opposite end bent around an anvil connected to stationary vehicle support structure. When the steering column collapses, the straps unwind from the anvils, thereby resisting steering column collapse and absorbing energy. One or more of the straps may be cut in two by a knife at the time of the collision, thereby removing it from the energy absorbing system. In another form of the invention, an energy absorbing strap extends around a piston which has two or more different size anvils. The piston is axially movable in a cylinder to positions surrounding one or another of the anvils. The strap is drawn over the anvil it surrounds when the steering column collapses, thereby resisting collapse of the steering column and absorbing a certain amount of energy depending on the size of the anvil.
Abstract:
A bursting energy absorber system having an impact head, and energy absorption mechanism. The energy absorbing mechanism has a generally rectangular mandrel for rupturing cooperating thin-wall generally rectangular tubes in a controlled rupture to absorb impact forces for a colliding vehicle. A frame may be used to mount the system to a truck, trailer, guardrail, median barrier end treatment, or a crash cushion. Stress concentrators such as saw cuts or scoring may be incorporated into the absorption tubes to selectively control rupturing and energy dissipation. The mandrels may be tapered, rectangularly shaped with beveled edges to reduce frictional forces along the interior corners of the tubes. Lubricants may be applied to further control frictional influences.
Abstract:
A fall safety device is provided having a load-bearing rotor 2, which supports at least one locking member 6, which can be moved by centrifugal force and which is moved into engagement with at least one stop 7b of a stator 4 if a certain rotor speed is exceeded and blocks the further rotation of the rotor 2. The locking member 6 and/or the stop 7b is in active connection with a braking body 8, which undergoes a plastic deformation when engaging the fall safety device and damps the stopping process.
Abstract:
To prevent a shock absorbing material mounted on a vehicle body from collapsing or being scattered under the shock at the time of a collision. The four sides of a shock absorbing material formed of a foamed material are surrounded by a bellows form cover consisting of four corrugated plates inclusive of corrugated plates. Under an external force due to collision, the bellows is folded and contracted easily, but is difficult to be deformed in the width directions. Therefore, the shock absorbing material receives the energy upon collision in its initial shape, so that the energy is absorbed substantially by the compression of the shock absorbing material. Accordingly, it suffices to design a set load for the shock absorbing material by taking into account only the shock absorbing material, so that it is easy to design the shape, material and the like of the shock absorbing material.
Abstract:
Tunable pull-through energy attenuator and decelerator devices is disclosed which provide for variable force-time profiles, deceleration and kinetic energy attenuation of moving objects so as to prevent damage or injury to impacting objects, vehicles or persons. The device employs either consumable inelastic or reusable, viscoelastic deforming elements, such as tubes, rods, plates or strips, which absorb substantial amounts of energy through repeated inelastic or viscoelastic deformation when the deforming element is pulled-through a tunable array of rigid pins having a variety of configurations and settings. The disclosed devices provide for variable force-time profiles which control the cumulative deformation and thereby the amount of energy absorbed and rate of deceleration of impacting objects. The device may be readily adapted and deployed as highway vehicle guardrails, road barriers or crash cushions for frontal and side impacts and as load attenuators for crash-resistant aircraft seats, spacecraft landing pods, crash-resistant aircraft landing gear, aircraft and vehicle passenger restraint harnesses, cargo tie-downs, vehicle bumpers and collapsible vehicle steering columns.