Abstract:
An apparatus and method are provided for decomposition of a propellant. The propellant includes an ionic salt and an additional fuel. Means are provided for decomposing a major portion of the ionic salt. Means are provided for combusting the additional fuel and decomposition products of the ionic salt.
Abstract:
Methods and arrangements for tailoring rocket exhaust plume signatures of rocket exhaust systems are disclosed. The tailoring of the rocket exhaust plume signature is accomplished by providing and locating at least one structure having materials and/or additives that modify the radiant intensity pattern of the rocket exhaust plume upon ablation or melting into the rocket exhaust plume. The materials and/or additives can be manufactured or incorporated into preexisting ablative materials of the rocket exhaust system or be provided as stand-alone structures.
Abstract:
The radius of the hinged portion of the convergent/divergent axisymmetrical exhaust nozzle of a gas turbine engine is configured at the surface seeing the flow to be contoured at a critical radius so to enhance the flow characteristics of the nozzle and improve the low observables. The liner normally associated with the convergent flap is cut back at the juncture adjacent the hinged point connecting the divergent flap to be below the radar sight at the tail of the engine.
Abstract:
The invention relates to the use of the collision of matter and antimatter as a means of propulsion in a spacecraft, to the control system for said engine and to a block diagram of the connections for same, in which all of the functions are divided into modules. Said invention refers to a form of propulsion that is totally different to those know at present, which enables spacecraft to move considerably faster in outer space and to reach up to one third of the speed light owing to the controlled collision of matter and antimatter. The control system works in conjunction with the engine in order to control the collision and to maintain the optimal parameters for performing said movement.
Abstract:
A Hydromagnetic inertial thruster (10) comprising a centrifugal force generator (18), a plurality of electromagnets (22), a hydromagnetic fluid (36), and a stator housing (12) to support the operation of the centrifugal generator (18). The plurality of electromagnets (22) generates a magnetic field (Ho) to attract and hold a mass of a magnetically susceptible fluid (36).The centrifugal rotor (18) and the electromagnets (22) while generating the magnetic field (Ho) rotate together with the mass of fluid (36) for about one half of a cycle of revolution to generate an unbalanced centrifugal force (Fc) with the fluid (36). The vector sums of all the centrifugal force (Fc) vectors become a directional propulsion force (Fp).
Abstract:
A high temperature gas turbine component for use in the gas flow path that also is a specular optical reflector. A thin layer of a high temperature reflector is applied to the gas flow path of the component, that is, the surface of the component that forms a boundary for hot combustion gases. The component typically includes a thermal barrier coating overlying the high temperature metallic component that permits the component to operate at elevated temperatures. The thermal barrier coating must be polished in order to provide a surface that can suitably reflect the radiation into the gas flow path. A thin layer of the high temperature reflector the is applied over the polished thermal barrier coating by a process that can adequately adhere the reflector to the polished surface without increasing the roughness of the surface. The high temperature reflector can be applied to any surface aft of the compressor, such as on a centerbody. The surface reflects radiation back into the hot gas flow path or into the atmosphere. The reflected radiation is not focused onto any other hardware component. The design of the component is such that the radiation is returned to the gas flow path or sent to the atmosphere rather than absorbed into a component wall that only serves to increase the temperature of the wall.
Abstract:
A method and a system (10) for exhausting gas via a nozzle (19, 21) of a gas turbine engine, for example. The system (10) comprises a nozzle (19, 21) comprising a nozzle body portion (32, 33, 74) defining a nozzle exit (42, 43), characterised in that the nozzle body portion (32, 33, 74) comprises fluid injection means (60), positioned upstream of the exit (42, 43) relative to a fluid flow (F1, F2) created by the operation of the system, for injecting fluid (68) upstream of the exit (42, 43).
Abstract:
The invention refers to an apparatus for controlling the flow separation line of rocket nozzles for reducing side loads. For obtaining this control it is suggested according to the invention that the inside of the nozzle (1) has circumferentially regular spaced areas (2) with increased surface roughness compared with the rest of the inside of the nozzle.
Abstract:
A combustion type power tool capable of avoiding damage to seal members and a housing to prolong a service life, and capable of enhancing operability and workability. Temperature elevation of a combustion chamber frame due to combustion of a mixture of combustible gas and air is detected by a temperature sensor disposed in a housing. If the detected temperature exceeds a preset temperature, ignition of an ignition plug is prohibited by a prohibiting unit in spite of ON operation of a trigger switch. In this state, alarming is performed by a display to notify the user of inoperable sate of the tool. Similar control can be made when the temperature sensor is disposed at a cylinder, an exhaust cover and the housing.
Abstract:
The engine for a rocket is suitable for using for an educational program. The engine uses a liquid phase propellant having a predetermined boiling point and a heating substance having a temperature higher than the boiling point. The engine has an inner wall having a circumferential surface; an outer wall surrounding the inner wall, the outer wall having an interior surface spaced from the circumferential surface of the inner wall by a predetermined distance such that the space between the circumferential surface and the interior surface form a mixing chamber having an opening; and injector for injecting the liquid-phase propellant and the heating substance into the mixing chamber so that the propellant is evaporated by the heating substance thereby creating a jet stream moving from the opening of the mixing chamber to the outside of the mixing chamber.