摘要:
Engine has core compressor, combustor and turbine, fan located upstream of core and supersonic intake for slowing down incoming air at inlet formed by intake, bypass duct surrounding engine core, fan generates airflow to engine core and bypass airflow through bypass duct. Engine has mixer for exhaust gas flow exiting engine core, bypass airflow exiting bypass duct, thrust nozzle for discharging mixed flows, and controller for thrust produced by engine. To change level of engine thrust between transonic push operation and supersonic cruise operation, controller adjusts one or more components which vary relative areas available for hot exhaust gas flow and cold bypass airflow at mixer while holding fan inlet non-dimensional mass flow w √{square root over ( )} T/P substantially constant, where w is mass flow of incoming air at fan inlet, T is stagnation temperature of incoming air at fan inlet and P is stagnation pressure of incoming air at fan inlet.
摘要:
An exhaust section of a gas turbine engine includes an exhaust plug, and an exhaust nozzle radially offset from the exhaust plug defining an exhaust pathway between the exhaust plug and the exhaust nozzle. The exhaust plug is configured for axial translation relative to exhaust nozzle between a first position and a second position to selectably change a cross-sectional area of the exhaust pathway during thrust reversal operation of the gas turbine engine to reduce an amount of reverse thrust necessary. A method of operating a gas turbine engine includes actuating a fan thrust reverser to divert a fan airflow from a fan airflow pathway, and translating an exhaust plug from a first position to a second position, thereby increasing a cross-sectional area of an exhaust pathway to reduce an amount of reverse thrust necessary.
摘要:
A variable area fan nozzle comprises an actuator flap and a follower flap. The actuator flap has a portion in contact with a portion of the follower flap. A bias member biases the follower flap outwardly. An actuator actuates the actuator flap inwardly and outwardly to, in turn, move the follower flap against the bias member and to vary an area of an exhaust nozzle. The flap actuator is operable to drive the actuator flap out of contact with the follower flap into a thrust reverser position.
摘要:
An exhaust nozzle for a gas turbine engine according to an example of the present disclosure includes, among other things, a duct having a first surface and a second surface extending about a duct axis to define an exhaust flow path, and at least one effector positioned along the first surface. The at least one effector is pivotable about an effector axis to vary a throat area of the exhaust flow path. The at least one effector tapers along the effector axis. A method of exhaust control for a gas turbine engine is also disclosed.
摘要:
A gas turbine engine (10) includes a fan (14), a nacelle (28) arranged about the fan, and an engine core at least partially within the nacelle. A fan bypass passage (30) downstream of the fan between the nacelle and the gas turbine engine conveys a bypass airflow (1) from the fan. A nozzle (40) associated with the fan bypass passage is operative to control the bypass airflow. The nozzle includes a shape memory material having a first solid state phase that corresponds to a first nozzle position and a second solid state phase that corresponds to a second nozzle position.
摘要:
A turbine exhaust nozzle includes an inner shell disposed coaxially inside an outer shell to define a flow duct terminating in an outlet at a trailing edge of the outer shell. The inner shell is non-axisymmetric and varies in axial slope angle circumferentially around the duct.
摘要:
The invention relates to a linear telescopic actuator for moving a first (10b) and a second (10a) element relative to a stationary element (102). Said actuator comprises a base (101) that is to be connected to the stationary element (102) and is used as a cavity for a first rotationally locked rod (106) which can be translated by a drive shaft (104) that is to be connected to rotational driving means (107). One end (108) of said first rod is to be connected to the first element that is to be moved. The actuator is characterized in that the first rod (106) supports a second rod (117) which is aligned therewith and one end (118) of which is to be connected to the second element that is to be moved. Said second rod (117) can be rotationally locked and can be translated by a second drive shaft (112, 115) which extends through the base and is connected to rotational driving means (113, 111).
摘要:
Supersonic Magnetic Advanced Generation Jet Electric Turbine (S-MAGJET) described herein, and a subsonic derivative, MAGJET, integrate a gas power turbine, superconducting electric power and propulsion generation, and magnetic power flux field systems along with an ion plasma annular injection combustor which utilizes alternative petroleum-based fuel and combustion cycles to create a hybrid turbine turbomachine for aerospace propulsion. The propulsion unit is able to achieve a dramatic increase in horsepower, combustion and propulsion efficiency, and weight reduction. In addition, the turbomachinery structures may be disposed within an exoskeleton architecture that achieves an increase in thrust to weight ratio with a concomitant increase in fuel efficiency and power generation. The engine continuously adjusts the temperature, pressure and mass airflow requirements using an electromagnetic power management system architecture. Engine performance may be controlled across the entire desired flight envelope, whether subsonic, transonic or supersonic flight conditions.
摘要:
One embodiment of the present invention is a gas turbine engine with a bypass mixer. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engines and bypass mixers. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
摘要:
The invention relates to an exhaust nozzle for a bypass airplane turbojet comprising an annular central body, an annular primary cover surrounding the central body to define a hot stream flow channel, and an annular secondary cover surrounding the primary cover to define a cold stream flow channel, each of the central body and the secondary cover comprising a stationary portion and a movable portion connected to a downstream end of the stationary portion, the movable portion of the central body being suitable for being retracted longitudinally upstream relative to the stationary portion, and the movable portion of the secondary cover being suitable for being deployed longitudinally downstream relative to the stationary portion.