Abstract:
The invention relates to a tool for generating steam and combustion gases for producing oil from an oil well. The tool includes a main body with a first end including a connection site for receiving a connection of an input line for fuel and/or water and an air inlet port configured to receive air from the atmosphere around the tool. The tool includes an ignition component arranged within the main body configured to ignite the air and the fuel to generate a flame. The tool includes a combustion chamber for accommodating the flame and extending at a second end of the main body opposite the first end, the combustion chamber defined by a wall and an outlet configured to allow exit of combusted products from the combustion chamber. The tool includes a passageway within the tool from the air inlet port to the combustion chamber.
Abstract:
A downhole assembly includes a downhole tool including a degradable-on-demand material and a triggering system. The degradable-on-demand material includes a matrix material and an energetic material configured to generate energy upon activation to facilitate the degradation of the downhole tool. The triggering system includes an igniter arranged to ignite the downhole tool, an electrical circuit, and a pre-set timer. In an open condition of the circuit the igniter is not activated, and in a closed condition of the circuit the igniter is activated. The pre-set timer is operable to close the electrical circuit after a pre-set time period.
Abstract:
Systems and methods are disclosed that may include producing wellhead gas from a wellbore, removing hydrocarbons and/or other particulates from the wellhead gas produced from the wellbore to maximize and/or provide a consistent BTU level to the wellhead gas, and burning the wellhead gas in a wellhead gas burner to heat water and/or other chemicals used in hydrocarbon production and/or well completion processes, including, but not limited to hydraulic fracturing (fracking). The wellhead gas burner may also be configured as a primary heat source and integrated with a traditional gas burner system configured as a supplemental heat source. The wellhead gas burner and the traditional gas burner may also be operated simultaneously. The wellhead gas burner may also be mounted to a mobile superheater truck.
Abstract:
A downhole steam generation system may include a burner head assembly, a liner assembly, a vaporization sleeve, and a support sleeve. The burner head assembly may include a sudden expansion region with one or more injectors. The liner assembly may include a water-cooled body having one or more water injection arrangements. The system may be optimized to assist in the recovery of hydrocarbons from different types of reservoirs. A method of recovering hydrocarbons may include supplying one or more fluids to the system, combusting a fuel and an oxidant to generate a combustion product, injecting a fluid into the combustion product to generate an exhaust gas, injecting the exhaust gas into a reservoir, and recovering hydrocarbons from the reservoir.
Abstract:
A downhole burner is used for producing heavy-oil formations. Hydrogen, oxygen, and steam are pumped by separate conduits to the burner, which burns at least part of the hydrogen and forces the combustion products out into the earth formation. The steam cools the burner and becomes superheated steam, which is injected along with the combustion products into the earth formation. Carbon dioxide is also pumped down the well and injected into the formation.
Abstract:
An apparatus for generating a heated product stream downhole is provided wherein a fuel rich mixture is reacted downhole by contact with a catalyst to produce a partially reacted product stream, the fuel rich mixture comprising fuel and oxygen. The partially reacted product stream is brought into contact with an oxidant thereby igniting combustion upon contact producing a combustion product stream. The combustion product stream may be cooled by injecting a diluent flow such as water or CO2. The cooled combustion product stream may be injected into oil bearing strata in order to reduce the energy requirements for the production of heavy oil.
Abstract:
A process and system for release and recovery of methane from subterranean methane hydrate deposits in which heated CO2 is used to displace methane from the methane hydrate deposits and a portion of the displaced methane is routed to a combustion device proximate the deposit for combustion in-situ, generating heated CO2 which is introduced into the deposit, displacing additional methane, a portion of which is routed to the combustion device, thereby providing a substantially self-sustaining process. Portions of the displace methane not routed to the combustion device are captured for use elsewhere.
Abstract:
A downhole tool having a body or structural component comprises a material that is at least partially consumed when exposed to heat and a source of oxygen. The material may comprise a metal, such as magnesium, which is converted to magnesium oxide when exposed to heat and a source of oxygen. The downhole tool may further comprise a torch with a fuel load that produces the heat and source of oxygen when burned. The fuel load may comprise a flammable, non-explosive solid, such as thermite.
Abstract:
An apparatus for generating a heated product stream downhole is provided wherein a fuel rich mixture is reacted downhole by contact with a catalyst to produce a partially reacted product stream, the fuel rich mixture comprising fuel and oxygen. The partially reacted product stream is brought into contact with an oxidant thereby igniting combustion upon contact producing a combustion product stream. The combustion product stream may be cooled by injecting a diluent flow such as water or CO2. The cooled combustion product stream may be injected into oil bearing strata in order to reduce the energy requirements for the production of heavy oil.